9 research outputs found

    Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives

    No full text
    In recent years, the new direction such as identification of informative circulating markers reflecting molecular genetic changes in the DNA of tumor cells was actively developed. Smoking-related DNA adducts are very promising research area, since they indicate high pathogenetic importance in the lung carcinogenesis and can be identified in biological samples with high accuracy and reliability using highly sensitive mass spectrometry methods (TOF/TOF, TOF/MS, MS/MS). The appearance of DNA adducts in blood or tissues is the result of the interaction of carcinogenic factors, such as tobacco constituents, and the body reaction which is determined by individual characteristics of metabolic and repair systems. So, DNA adducts may be considered as a cumulative mirror of heterogeneous response of different individuals to smoking carcinogens, which finally could determine the risk for lung cancer. This review is devoted to analysis of the role of DNA adducts in lung carcinogenesis in order to demonstrate their usefulness as cancer associated markers. Currently, there are some serious limitations impeding the widespread use of DNA adducts as cancer biomarkers, due to failure of standardization of mass spectrometry analysis in order to correctly measure the adduct level in each individual. However, it is known that all DNA adducts are immunogenic, their accumulation over some threshold concentration leads to the appearance of long-living autoantibodies. Thus, detection of an informative pattern of autoantibodies against DNA adducts using innovative multiplex ELISA immunoassay may be a promising approach to find lung cancer at an early stage in high-risk groups (smokers, manufacturing workers, urban dwellers). Key Words: lung cancer, DNA adducts, tobacco smoking

    Evaluating Academic Adaptation in Students: A New Technique

    No full text
    Evaluation of academic adaptation in students is an important aspect of their incorporation into the educational environment of university. Academic adaptation can be considered a complex multicomponent formation that requires a specially developed tool to measure an individual’s ability to adapt to the educational environment in general. The aim of the research was to develop, validate and standardize a special technique for evaluating academic adaptation in university students. The study involved 419 1—4-year students aged 17—26, with the average age of M=19.6 SD=2.8 (18.4% male). A questionnaire was used to assess socio-demographic characteristics. To assess the academic potential, we used a technique called “Adaptability” by A.G. Maklakov and S.V. Chermenin. We assumed that academic adaptation includes cognitive, emotional, motivational, psychophysiological, communicative and personal components. Our technique includes six scales matching these components and a separate integral scale. In the process of designing the technique we tested its reliability, face, content and convergent validity and standardization. The results of these testing showed that the technique has good psychometric indicators and can be used both for research and applied purposes

    Ischemic heart disease in workers at Mayak PA: Latency of incidence risk after radiation exposure.

    No full text
    We present an updated analysis of incidence and mortality from atherosclerotic induced ischemic heart diseases in the cohort of workers at the Mayak Production Association (PA). This cohort constitutes one of the most important sources for the assessment of radiation risk. It is exceptional because it comprises information on several other risk factors. While most of the workers have been exposed to external gamma radiation, a large proportion has additionally been exposed to internal radiation from inhaled plutonium. Compared to a previous study by Azizova et al. 2012, the updated dosimetry system MWDS-2008 has been applied and methods of analysis have been revised. We extend the analysis of the significant incidence risk and observe that main detrimental effects of external radiation exposure occur after more than about 30 years. For mortality, significant risk was found in males with an excess relative risk per dose of 0.09 (95% CI: 0.02; 0.16) [Formula: see text] while risk was insignificant for females. With respect to internal radiation exposure no association to risk could be established

    Modeling of Respiratory System Dysfunction Among Nuclear Workers: A Preliminary Study

    Get PDF
    Numerous studies have reported on cancers among Mayak Production Association (PA) nuclear workers. Other studies have reported on serious deterministic effects of large radiation doses for the same population. This study relates to deterministic effects (respiratory system dysfunction) in Mayak workers after relatively small chronic radiation doses (alpha plus gamma). Because cigarette smoke is a confounding factor, we also account for smoking effects. Here we present a new empirical mathematical model that was introduced for simultaneous assessment of radiation and cigarette-smoking-related damage to the respiratory system. The model incorporates absolute thresholds for smoking- and radiation-induced respiratory system dysfunction. As the alpha radiation dose to the lung increased from 0 to 4.36 Gy, respiratory function indices studied decreased, although remaining in the normal range. The data were consistent with the view that alpha radiation doses to the lung above a relatively small threshold (0.15 to 0.39 Gy) cause some respiratory system dysfunction. Respiratory function indices were not found to be influenced by total-body gamma radiation doses in the range 0–3.8 Gy when delivered at low rates over years. However, significant decreases in airway conductance were found to be associated with cigarette smoking. Whether the indicated cigarette smoking and alpha radiation associated dysfunction is debilitating is unclear

    Cerebrovascular diseases in workers at Mayak PA: The difference in radiation risk between incidence and mortality.

    No full text
    A detailed analysis of cerebrovascular diseases (CeVD) for the cohort of workers at Mayak Production Association (PA) is presented. This cohort is especially suitable for the analysis of radiation induced circulatory diseases, due to the detailed medical surveillance and information on several risk factors. The risk after external, typically protracted, gamma exposure is analysed, accounting for potential additional internal alpha exposure. Three different endpoints have been investigated: incidence and mortality from all cerebrovascular diseases and incidence of stroke. Particular emphasis was given to the form of the dose-response relationship and the time dependence of the radiation induced risk. Young attained age was observed to be an important, aggravating modifier of radiation risk for incidence of CeVD and stroke. For incidence of CeVD, our analysis supports a dose response sub-linear for low doses. Finally, the excess relative risk per dose was confirmed to be significantly higher for incidence of CeVD compared to CeVD mortality and incidence of stroke. Arguments are presented for this difference to be based on a true biological effect

    Development of novel monoclonal antibodies for evaluation of transmembrane prostate androgen-induced protein 1 (TMEPAI) expression patterns in gastric cancer.

    No full text
    Transmembrane prostate androgen-induced protein 1 (TMEPAI) is a single-span membrane protein, functionally involved in transforming growth factor beta signaling pathway. The particular protein presented in cells in three isoforms, which differs in the length of the soluble N-terminal extracellular domain, making it challenging for the immunochemical recognition. By using quantitative real-time polymerase chain reaction, we identified significant upregulation of PMEPA1 gene expression in malignant tissues of patients with gastric adenocarcinoma. The main part of commercially available anti-TMEPAI antibodies are having polyclonal nature or not suitable for immunocytochemical localization of target protein in tissue specimens. Hence, we decide to generate a set of novel rat monoclonal antibodies (mAb) directed against conservative C-terminal cytoplasmic epitope. Immunoblotting analysis showed that monoclonal antibodies, 2E1, 6C6, and 10A7 were able to recognize specifically target protein in transiently transfected HEK293T and CHO-K1 cells. Especially established mAb, named 10A7, showed the excellent binding ability to target protein in immunohistochemistry. By using developed antibodies, we observed pronounced expression of TMEPAI in normal gastric epithelial cells while tumor cells from gastric adenomas, and adenocarcinoma samples were mostly negative for target protein expression. Also, we found that gastric epithelium cells lose the TMEPAI expression concurrently with severe dysplasia progression, which probably caused by a mechanism involving specific microRNA

    Modeling of Respiratory System Dysfunction Among Nuclear Workers: A Preliminary Study

    Get PDF
    Numerous studies have reported on cancers among Mayak Production Association (PA) nuclear workers. Other studies have reported on serious deterministic effects of large radiation doses for the same population. This study relates to deterministic effects (respiratory system dysfunction) in Mayak workers after relatively small chronic radiation doses (alpha plus gamma). Because cigarette smoke is a confounding factor, we also account for smoking effects. Here we present a new empirical mathematical model that was introduced for simultaneous assessment of radiation and cigarette-smoking-related damage to the respiratory system. The model incorporates absolute thresholds for smoking- and radiation-induced respiratory system dysfunction. As the alpha radiation dose to the lung increased from 0 to 4.36 Gy, respiratory function indices studied decreased, although remaining in the normal range. The data were consistent with the view that alpha radiation doses to the lung above a relatively small threshold (0.15 to 0.39 Gy) cause some respiratory system dysfunction. Respiratory function indices were not found to be influenced by total-body gamma radiation doses in the range 0–3.8 Gy when delivered at low rates over years. However, significant decreases in airway conductance were found to be associated with cigarette smoking. Whether the indicated cigarette smoking and alpha radiation associated dysfunction is debilitating is unclear

    Modern Trends of Organic Chemistry in Russian Universities

    No full text
    corecore