154 research outputs found
Recommended from our members
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload.
The integration of in vitro cardiac tissue models, human induced pluripotent stem cells (hiPSCs) and genome-editing tools allows for the enhanced interrogation of physiological phenotypes and recapitulation of disease pathologies. Here, using a cardiac tissue model consisting of filamentous three-dimensional matrices populated with cardiomyocytes derived from healthy wild-type (WT) hiPSCs (WT hiPSC-CMs) or isogenic hiPSCs deficient in the sarcomere protein cardiac myosin-binding protein C (MYBPC3-/- hiPSC-CMs), we show that the WT microtissues adapted to the mechanical environment with increased contraction force commensurate to matrix stiffness, whereas the MYBPC3-/- microtissues exhibited impaired force development kinetics regardless of matrix stiffness and deficient contraction force only when grown on matrices with high fibre stiffness. Under mechanical overload, the MYBPC3-/- microtissues had a higher degree of calcium transient abnormalities, and exhibited an accelerated decay of calcium dynamics as well as calcium desensitization, which accelerated when contracting against stiffer fibres. Our findings suggest that MYBPC3 deficiency and the presence of environmental stresses synergistically lead to contractile deficits in cardiac tissues
Computational Modeling of the Experimental Response of Microscale Bistable Tensegrity Structures
We report about the analysis, design, and experimental testing of modular structures composed of bistable units derived from the classic triangular tensegrity prism. Tensegrity structures are pinconnected frameworks, composed by bars and cables, possessing internal mechanisms and self-stress states, and featuring a variety of structural responses depending on their prestress, edge connectivity, and geometry. When a tensegrity system has only one internal mechanism and one self-stress state, as in the triangular prism case, it is possible to associate to it a corresponding bistable unit, by replacing all cables with bars and changing their edge-lengths slightly. After presenting experimental results of compression tests carried out on microscale specimens fabricated through multiphoton lithography, we compare them with the numerical predictions obtained by our computational model
Mission-based hull-form and propeller optimization of a transom stern destroyer for best performance in the sea environment
An overview is presented of the activities conducted within the NATO STO Task
Group AVT-204 to “Assess the Ability to Optimize Hull Forms of Sea Vehicles for the Best Per-
formance in a Sea Environment.” The objective is the development of a greater understanding of
the potential and limitations of the hydrodynamic optimization tools. These include
low- and high-fidelity solvers, automatic shape modification methods, and multi-objective optimiza-
tion algorithms, and are limited here to a deterministic application. The approach
includes simulation-based design optimization methods from different research teams.
Analysis tools include potential flow and Reynolds-averaged Navier-Stokes equation solvers.
Design modifica- tion tools include global modification functions, control point based methods, and
parametric modelling by hull sections and basic curves. Optimization algorithms include particle
swarm optimization, sequential quadratic programming, genetic and evolutionary algorithms. The ap-
plication is the hull-form and propeller optimization of the DTMB 5415 model for significant
conditions, based on actual missions at sea
Pitfalls in the Diagnosis of Anaplastic Large Cell Lymphoma with a Small Cell Pattern
Anaplastic large cell lymphoma with a small cell pattern is a rare T-cell lymphoma. This condition is more frequently seen in younger patients and should be considered when patients present with leucocytosis and constitutional symptoms. In this report, we describe our diagnostic work-up for one such case using blood, lymph node, and bone marrow aspirate samples, highlighting the variability of antigen expression seen in different sample types and methodologies. This case shows the importance of having a high index of suspicion and assessing CD30 and anaplastic lymphoma kinase expression in all suspected T-cell neoplasms even though this rare condition is not necessarily expected
Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu-Al2O3 and Co-Al2O3 catalysts in water
The production of cyclopentanone derivatives from 5-hydroxymethylfurfural (HMF) using non-noble metal based catalysts is reported for the first time. Five different mixed oxides containing Ni, Cu, Co, Zn and Mg phases on an Al-rich amorphous support were prepared and characterised (XRD, ICP, SEM, TEM, H2-TPR, NH3/CO2-TPD and N2 sorption). The synthesised materials resulted in well-dispersed high metal loadings in a mesoporous network, exhibiting acid/base properties. The catalytic performance was tested in a batch stirred reactor under H2 pressure (20–50 bar) in the range T = 140–180 °C. The Cu–Al2O3 and the Co–Al2O3 catalysts showed a highly selective production of 3-hydroxymethylcyclopentanone (HCPN, 86%) and 3-hydroxymethylcyclopentanol (HCPL, 94%), respectively. A plausible reaction mechanism is proposed, clarifying the role of the reduced metal phases and the acid/basic sites on the main conversion pathways. Both Cu–Al2O3 and Co–Al2O3 catalysts showed a loss of activity after the first run, which can be reversed by a regeneration treatment. The results establish an efficient catalytic route for the production of the diol HCPL (reported for the first time) and the ketone HCPN from bio-derived HMF over 3d transition metals based catalysts in an environmental friendly medium such as water
Advanced Hodgkin lymphoma in the East of England: a 10-year comparative analysis of outcomes for real-world patients treated with ABVD or escalated-BEACOPP, aged less than 60 years, compared with 5-year extended follow-up from the RATHL trial
Treatment with ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) or escalated(e)-BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone) remains the international standard of care for advanced-stage classical Hodgkin lymphoma (HL). We performed a retrospective, multicentre analysis of 221 non-trial (“real-world”) patients, aged 16–59 years, diagnosed with advanced-stage HL in the Anglia Cancer Network between 2004 and 2014, treated with ABVD or eBEACOPP, and compared outcomes with 1088 patients in the Response-Adjusted Therapy for Advanced Hodgkin Lymphoma (RATHL) trial, aged 18–59 years, with median follow-up of 87.0 and 69.5 months, respectively. Real-world ABVD patients (n=177) had highly similar 5-year progression-free survival (PFS) and overall survival (OS) compared with RATHL (PFS 79.2% vs 81.4%; OS 92.9% vs 95.2%), despite interim positron-emission tomography-computed tomography (PET/CT)-guided dose-escalation being predominantly restricted to trial patients. Real-world eBEACOPP patients (n=44) had superior PFS (95.5%) compared with real-world ABVD (HR 0.20, p=0.027) and RATHL (HR 0.21, p=0.015), and superior OS for higher-risk (international prognostic score ≥3 [IPS 3+]) patients compared with real-world IPS 3+ ABVD (100% vs 84.5%, p=0.045), but not IPS 3+ RATHL patients. Our data support a PFS, but not OS, advantage for patients with advanced-stage HL treated with eBEACOPP compared with ABVD and suggest higher-risk patients may benefit disproportionately from more intensive therapy. However, increased access to effective salvage therapies might minimise any OS benefit from reduced relapse rates after frontline therapy
Recommended from our members
Comparison of 5-year progression of retinitis pigmentosa involving the posterior pole among siblings by means of SD-OCT: a retrospective study
The blockchain technology promises to transform finance, money and evengovernments. However, analyses of blockchain applicability and robustness typicallyfocus on isolated systems whose actors contribute mainly by running the consensusalgorithm. Here, we highlight the importance of considering trustless platformswithin the broader ecosystem that includes social and communication networks. Asan example, we analyse the flash-crash observed on 21st June 2017 in the Ethereumplatform and show that a major phenomenon of social coordination led to acatastrophic cascade of events across several interconnected systems. We proposethe concept of “emergent centralisation” to describe situations where a single systembecomes critically important for the functioning of the whole ecosystem, and arguethat such situations are likely to become more and more frequent in interconnectedsocio-technical systems. We anticipate that the systemic approach we propose willhave implications for future assessments of trustless systems and call for the attentionof policy-makers on the fragility of our interconnected and rapidly changing world
Recommended from our members
A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes
We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material, as well as high permeability attributed to embedded carbon nanotubes. These membranes have a potential for applications that may require high flux, flexibility and durability
Recommended from our members
Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes
Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities
- …