50 research outputs found

    Combining process-based models for future biomass assessment at landscape scale

    Get PDF
    International audienceWe need an integrated assessment of the bioenergy production at landscape scale for at least three main reasons: (1) it is predictable that we will soon have landscapes dedicated to bioenergy productions; (2) a number of “win–win” solutions combining several dedicated energy crops have been suggested for a better use of local climate, soil mosaic and production systems and (3) “well-to-wheels” analyses for the entire bioenergy production chain urge us to optimize the life cycle of bioenergies at large scales. In this context, we argue that the new generation of landscape models allows in silico experiments to estimate bioenergy distributions (in space and time) that are helpful for this integrated assessment of the bioenergy production. The main objective of this paper was to develop a detailed modeling methodology for this purpose. We aimed at illustrating and discussing the use of mechanistic models and their possible association to simulate future distributions of fuel biomass. We applied two separated landscape models dedicated to human-driven agricultural and climate-driven forested neighboring patches. These models were combined in the same theoretical (i.e. virtual) landscape for present as well as future scenarios by associating realistic agricultural production scenarios and B2-IPCC climate scenarios depending on the bioenergy type (crop or forest) concerned in each landscape patch. We then estimated esthetical impacts of our simulations by using 3D visualizations and a quantitative “depth” index to rank them. Results first showed that the transport cost at landscape scale was not correlated to the total biomass production, mainly due to landscape configuration constraints. Secondly, averaged index values of the four simulations were conditioned by agricultural practices, while temporal trends were conditioned by gradual climate changes. Thirdly, the most realistic simulated landscape combining intensive agricultural practices and climate change with atmospheric CO2 concentration increase corresponded to the lowest and unwanted bioenergy conversion inefficiency (the biomass production ratio over 100 years divided by the averaged transport cost) and to the most open landscape. Managing land use and land cover changes at landscape scale is probably one of the most powerful ways to mitigate negative (or magnify positive) effects of climate and human decisions on overall biomass productions

    ParamĂštres gĂ©nĂ©tiques de l’efficience alimentaire et faisabilitĂ© d’une sĂ©lection en population bovine allaitante

    Get PDF
    La sĂ©lection gĂ©nĂ©tique de l’efficience alimentaire est un outil pour amĂ©liorer la rentabilitĂ© des Ă©levages allaitants. Jusqu’à prĂ©sent, une Ă©valuation gĂ©nĂ©tique de ce caractĂšre Ă©tait rĂ©alisĂ©e en station de contrĂŽle individuel (CI) Ă  partir d’un aliment complet condensĂ©, peu utilisĂ© dans les Ă©levages. L’objectif de cette Ă©tude est donc de vĂ©rifier si cette sĂ©lection est pertinente pour amĂ©liorer l’efficience alimentaire dans les Ă©levages, dans un contexte oĂč une mĂȘme population allaitante doit ĂȘtre Ă  la fois efficiente avec des animaux en croissance alimentĂ©s avec des rations fourragĂšres ou des rations concentrĂ©es. Pour cela, les populations mĂąle et femelle du dispositif BEEFALIM 2020 ont Ă©tĂ© utilisĂ©es ainsi que la population de taureaux Charolais passĂ©s en stations de CI. Trois critĂšres d’efficience alimentaire ont Ă©tĂ© utilisĂ©s : la consommation moyenne journaliĂšre rĂ©siduelle (CMJR), le gain moyen quotidien rĂ©siduel (GMQR) et le ratio d’efficience alimentaire (EA). Des estimations de paramĂštres gĂ©nĂ©tiques ont Ă©tĂ© rĂ©alisĂ©es pour apprĂ©hender les relations gĂ©nĂ©tiques de l’efficience alimentaire entre les populations Ă©tudiĂ©es. Concernant la voie mĂąle, une interaction gĂ©notype x milieu sur la CMJR existerait, qui pourrait donc entrainer un progrĂšs gĂ©nĂ©tique plus faible concernant la sĂ©lection de ce caractĂšre. Il serait donc pertinent de phĂ©notyper Ă  partir de fourrage pour diminuer cette interaction. Concernant les gĂ©nisses, la prĂ©cision des estimations est limitĂ©e en raison du faible nombre de gĂ©nisses phĂ©notypĂ©es et du fait que celles-ci Ă©taient phĂ©notypĂ©es Ă  l’ñge de deux ans et avaient donc des croissances moindres et moins comparables aux mĂąles phĂ©notypĂ©s plus jeunes

    CaractĂ©riser les dĂ©terminants physiologiques et gĂ©nĂ©tiques de l’efficience alimentaire des bovins allaitants : le programme BEEFALIM 2020

    Get PDF
    Dans le contexte actuel de forts coĂ»ts des intrants alimentaires et d’impact des productions bovines sur le changement climatique, l’efficience alimentaire apparaĂźt comme un levier d’action pour la durabilitĂ© Ă©conomique et environnementale de l’élevage allaitant. De plus, la valorisation par les bovins d’aliments cellulosiques, non Ă©ligibles Ă  l’alimentation humaine et favorisant un maintien des prairies et des services environnementaux associĂ©s, reprĂ©sente Ă©galement un enjeu majeur, en particulier dans les rĂ©gimes d’engraissement des jeunes bovins. Dans l’objectif d’étudier les dĂ©terminants, aussi bien physiologiques que gĂ©nĂ©tiques, de l’efficience alimentaire des bovins allaitants tout en prenant en compte le fait que la filiĂšre allaitante repose sur diffĂ©rents types d’animaux (jeunes bovins Ă  l’engraissement mais Ă©galement mĂšres allaitantes et gĂ©nisses de renouvellement) et diffĂ©rents types d’alimentation, un vaste programme de recherche a Ă©tĂ© menĂ©. IntitulĂ© BEEFALIM 2020, celui-ci s’est Ă©talĂ© entre 2013 et 2021 et a permis la production de nombreuses connaissances scientifiques. Cet article introductif prĂ©sente la structure et les objectifs de BEEFALIM 2020, dĂ©crit les dispositifs expĂ©rimentaux utilisĂ©s et reprend les principaux enseignements du programme en prĂ©ambule aux trois articles scientifiques qui en rapportent les rĂ©sultats dans le dĂ©tail

    Wood specific gravity variations within tree trunk: the case study of Legumes representatives in French Guiana

    Get PDF
    International audienceOver the past decade, much attention has been devoted to the development of forest biomass estimation methods at a stand scale, leading to the establishment of allometric models (Chave et al., 2014). These allometric equations use a unique wood specific gravity value (WSG) per species, but neglect the within tree variations of WSG found by others (Wiemann & Williamson, 1989).The main objectives of this study are (1) to illustrate the diversity of radial (from pith to bark) and longitudinal (from bottom to top) patterns of WSG variation within and between species, (2) to highlight different trends of WSG radial variations and the possible misinterpretations of these trends due to the effect of heartwood and (3) to link these variations and patterns to the successional status of the species (from pioneer to sciaphilic species).We sampled 33 small trees (10<DBH<15cm) at the Paracou field station in French Guiana, belonging to 14 Legumes species, and to different ecological groups according to light. WSG radial profiles were measured at 3 heights along the trunk, and 2 heights along the crown, of each tree.We observed different radial and longitudinal patterns of WSG variation. Pioneer and heliophilic species show both radial and longitudinal increases in WSG, while shade-tolerant and sciaphilic species show the reverse pattern. Hemi-tolerant species show an intermediate pattern, with WSG increasing radially, but decreasing or increasing longitudinally. Decreasing radial pattern in sciaphilic species is due to the presence of heartwood relatively denser than sapwood. When a corrected WSG is used, sciaphilic species show the same radial pattern as hemi-tolerant species (i.e. increasing) or no radial pattern (i.e. ‘flat’ from pith to bark).Decreasing WSG from bottom to top is a general case, excepted for species with low WSG (i.e pioneers). All studied species tend to the same range of WSG values with height (~ 0.6-0.9), supported by a higher WSG under bark within trunk.We also developed a biomass model, implemented under Xplo software (Griffon et al., 2011) to infer trunk biomass from WSG profiles, allowing comparisons of both single- and varying-WSG models.Wood specific gravity variations within tree trunk: the case study of Legumes representatives in French Guiana

    Xtrawood: refining estimation of tree above ground biomass using wood density variations and tree structure

    Get PDF
    International audienceBackgroundTree above ground biomass (AGB) is currently estimated by tree-level allometrical models that take into account, tree volume estimated from proxy variables of tree size (DBH) and species average wood specific gravity (WSG). These methods are common and realistic from a practical point of view. However, they do not take into account deviance from fixed allometrical trajectories and species or tree level WSG variations. Here, we present Xtrawood software that allows computation of tree AGB according to structure and WSG variations.MethodXtrawood reconstructs tree structure and integrates WSG variations by merging tree structure and WSG data measured at different position in trees, leading to the computation of global AGB and visualization of WSG variation along tree structure. Tree structure is measured according to stem dimensions (length, diameter) and positions within tree, and encoded in Multiscale Tree Graph format (MTG). WSG data is made of radial WSG profiles (1 measure each 0,5 cm from pith to bark) sampled at different heights within whole tree. Xtrawood output are illustrated using a dataset collected on an Amazonian forest ‘biomass dominant species’, Dicorynia guianensis Amsh., also known to exhibit substantial WSG gradients along both radial and vertical axis. 9 trees ranging from 15 to 60 cm DBH were measured by climbers. Each tree was felled and samples were collected at different positions (3 in trunk, 1 to 5 in crown) to record WSG radial profiles.ResultsXtrawood allows computation of tree volume, but also visualization of WSG variations in tree as well as inference of WSG radial profiles at different heights. Output variables are decomposed according to different tree scale and locations (axis, trunk/crown) and easy to extract. Xtrawood results will be compared to those of standard estimation method and can be used to identify positions in trees where WSG value leads to the better estimate of tree AGB.Conclusion/perspectiveXtrawood produces AGB estimate with data from intensive measurements practices. The sampling protocol, used here, remains destructive and time-consuming because Xtrawood is not directly dedicated to forest managers, but to help calibration of realistic sampling strategies. Moreover, Xtrawood offers a way to understand relationships between tree development, WSG variations within tree structure and biomass accumulation in the context of natural forests or plantations. A software demo is available at coffee break
    corecore