702 research outputs found

    Getting just the Supersymmetric Standard Model at Intersecting Branes on the Z6-orientifold

    Full text link
    In this paper, globally N=1 supersymmetric configurations of intersecting D6-branes on the Z6-orientifold are discussed, involving also fractional branes. It turns out rather miraculously that one is led almost automatically to just ONE particular class of 5 stack models containing the SM gauge group, which all have the same chiral spectrum. The further discussion shows that these models can be understood as exactly the supersymmetric standard model without any exotic chiral symmetric/antisymmetric matter. The superpartner of the Higgs finds a natural explanation and the hypercharge remains massless. However, the non-chiral spectrum within the model class is very different and does not in all cases allow for a N=2 low energy field theoretical understanding of the necessary breaking U(1)xU(1)->U(1) along the Higgs branch, which is needed in order to get the standard Yukawa couplings. Also the left-right symmetric models belong to exactly one class of chiral spectra, where the two kinds of exotic chiral fields can have the interpretation of forming a composite Higgs. The aesthetical beauty of these models, involving only non-vanishing intersection numbers of an absolute value three, seems to be unescapable.Comment: 45 pages, 2 figures, v3:some signs corrected in erratum, conclusions unchange

    Neural phase locking predicts BOLD response in human auditory cortex

    Get PDF
    Natural environments elicit both phase-locked and non-phase-locked neural responses to the stimulus in the brain. The interpretation of the BOLD signal to date has been based on an association of the non-phase-locked power of high-frequency local field potentials (LFPs), or the related spiking activity in single neurons or groups of neurons. Previous studies have not examined the prediction of the BOLD signal by phase-locked responses. We examined the relationship between the BOLD response and LFPs in the same nine human subjects from multiple corresponding points in the auditory cortex, using amplitude modulated pure tone stimuli of a duration to allow an analysis of phase locking of the sustained time period without contamination from the onset response. The results demonstrate that both phase locking at the modulation frequency and its harmonics, and the oscillatory power in gamma/high-gamma bands are required to predict the BOLD response. Biophysical models of BOLD signal generation in auditory cortex therefore require revision and the incorporation of both phase locking to rhythmic sensory stimuli and power changes in the ensemble neural activity

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Auditory beat perception is related to speech output fluency in post-stroke aphasia

    Get PDF
    Aphasia affects at least one third of stroke survivors, and there is increasing awareness that more fundamental deficits in auditory processing might contribute to impaired language performance in such individuals. We performed a comprehensive battery of psychoacoustic tasks assessing the perception of tone pairs and sequences across the domains of pitch, rhythm and timbre in 17 individuals with post-stroke aphasia and 17 controls. At the level of individual differences we demonstrated a correlation between metrical pattern (beat) perception and speech output fluency with strong effect (Spearman’s rho = 0.72). This dissociated from more basic auditory timing perception, which did not correlate with output fluency. This was also specific in terms of the language and cognitive measures, amongst which phonological, semantic and executive function did not correlate with beat detection. We interpret the data in terms of a requirement for the analysis of the metrical structure of sound to construct fluent output, with both being a function of higher-order “temporal scaffolding”. The beat perception task herein allows measurement of timing analysis without any need to account for motor output deficit, and could be a potential clinical tool to examine this. This work suggests strategies to improve fluency after stroke by training in metrical pattern perception

    Neural phase locking predicts BOLD response in human auditory cortex

    Get PDF
    Natural environments elicit both phase-locked and non-phase-locked neural responses to the stimulus in the brain. The interpretation of the BOLD signal to date has been based on an association of the non-phase-locked power of high-frequency local field potentials (LFPs), or the related spiking activity in single neurons or groups of neurons. Previous studies have not examined the prediction of the BOLD signal by phase-locked responses. We examined the relationship between the BOLD response and LFPs in the same nine human subjects from multiple corresponding points in the auditory cortex, using amplitude modulated pure tone stimuli of a duration to allow an analysis of phase locking of the sustained time period without contamination from the onset response. The results demonstrate that both phase locking at the modulation frequency and its harmonics, and the oscillatory power in gamma/high-gamma bands are required to predict the BOLD response. Biophysical models of BOLD signal generation in auditory cortex therefore require revision and the incorporation of both phase locking to rhythmic sensory stimuli and power changes in the ensemble neural activity

    Common Fronto-temporal Effective Connectivity in Humans and Monkeys

    Get PDF
    Cognitive pathways supporting human language and declarative memory are thought to have uniquely evolutionarily differentiated in our species. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed a new approach using functional imaging to visualize the impact of direct electrical brain stimulation in human neurosurgery patients. Applying the same approach with macaque monkeys, we found remarkably comparable patterns of effective connectivity between auditory cortex and ventro-lateral prefrontal cortex (vlPFC) and parahippocampal cortex in both species. Moreover, in humans electrical tractography revealed rapid evoked potentials in vlPFC from stimulating auditory cortex and speech sounds drove vlPFC, consistent with prior evidence in monkeys of direct projections from auditory cortex to vocalization responsive regions in vlPFC. The results identify a common effective connectivity signature that from auditory cortex is equally direct to vlPFC and indirect to the hippocampus (via parahippocampal cortex) in human and nonhuman primates

    Common Fronto-temporal Effective Connectivity in Humans and Monkeys

    Get PDF
    Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus
    corecore