31,227 research outputs found

    Product market competition, efficiency and agency costs: an empirical analysis

    Get PDF
    Policy makers in Europe have been concerned that lack of product market competition have led productivity to lag behind the US. Theoretical models are ambiguous about the direction of the effect that product market competition should have on productivity. On the one hand increasing competition lowers firm’s profits and thus reduces incentives to exert effort (the Schumpeterian effect), on the other hand it reduces agency costs (or increases the risk of bankruptcy ) thus increasing incentives to exert effort. This paper uses panel data on UK establishments over the period 1980-1996 to investigate the relationship between product market competition and productivity levels and growth rates. The introduction of the European Union Single Market Programme (SMP) is used as an instrument for the change in product market competition. The SMP was ex ante expected to affect competition in some industries but not others. It is shown that the Lerner Index fell in the affected industries after the SMP by more than in the nonaffected. The results suggest that the increase in product market competition brought about by SMP led to an increase in overall levels of efficiency and growth rates. The sample of firms is then split into those with a principal-agent set up and those without. The increase in efficiency occurred in principal-agent type firms, and not in those where managerial control and ownership were more closely related. These results suggest that product market competition can play an important role in reducing agency costs and may explain some of the poor performance of European economies

    Choice of Consistent Family, and Quantum Incompatibility

    Get PDF
    In consistent history quantum theory, a description of the time development of a quantum system requires choosing a framework or consistent family, and then calculating probabilities for the different histories which it contains. It is argued that the framework is chosen by the physicist constructing a description of a quantum system on the basis of questions he wishes to address, in a manner analogous to choosing a coarse graining of the phase space in classical statistical mechanics. The choice of framework is not determined by some law of nature, though it is limited by quantum incompatibility, a concept which is discussed using a two-dimensional Hilbert space (spin half particle). Thus certain questions of physical interest can only be addressed using frameworks in which they make (quantum mechanical) sense. The physicist's choice does not influence reality, nor does the presence of choices render the theory subjective. On the contrary, predictions of the theory can, in principle, be verified by experimental measurements. These considerations are used to address various criticisms and possible misunderstandings of the consistent history approach, including its predictive power, whether it requires a new logic, whether it can be interpreted realistically, the nature of ``quasiclassicality'', and the possibility of ``contrary'' inferences.Comment: Minor revisions to bring into conformity with published version. Revtex 29 pages including 1 page with figure

    Dynamic contrast-enhanced CT in the investigation of tumour angiogenesis and haemodynamics

    Get PDF
    This manuscript presents an investigation and application of the medical radiographic technique of Dynamic Contrast-enhanced Computed Tomography with an emphasis on its application to the measurement of tissue perfusion using the techniques of CT Perfusion. CT Perfusion was used in association with Fluoro- Deoxy Glucose Positron Emission Tomography (FDG PET) to investigate altered blood flow due to the angiogenic effects of tumour in the clinical setting of medical imaging for cancer diagnosis and staging. CT perfusion, CT enhancement and Doppler ultrasound studies were compared in a series of patient studies performed for the assessment of metastatic liver disease. There was good correlation between all techniques for the arterial phase but not between Doppler measurements of the portal phase and any CT measurement. A new method was developed for quantifying CT perfusion and enhancement values, the Standardised Perfusion Value (SPV) and the Standardised Enhancement Value (SEV). The SPV was shown to correlate with FDG uptake in a series of 16 patient studies of lung nodules, an unexpected and potentially important finding that if confirmed in a larger study may provide an additional diagnostic role for CT in the assessment of lung nodules. Investigation of a commercially available package for the determination of CT Perfusion, CT Perfusion GE Medical Systems, was undertaken in a small series of brain studies for assessment of acute stroke. This data set showed the technique to positively identify patients with non-hemorrhagic stroke in the presence of a normal conventional CT, to select those cases where thrombolysis is appropriate, and to provide an indication for prognosis. An investigation of the accuracy and cost-effectiveness of FDG PET in solitary pulmonary nodules using Australian data was carried out. FDG PET was found to be accurate, cost saving and cost effective for the characterisation of indeterminate solitary pulmonary nodules in Australia. This work was expanded to include the impact of quantitative contrast enhancement CT (QECT) on the cost-effectiveness of FDG PET. The addition of QECT is a cost effective approach, however whether QECT is used alone or in combination with FDG PET will depend on local availability of PET, the cost of PET with respect to surgery and the prior probability of malignancy. A published review of CT perfusion, clinical applications and techniques, is included in the body of the work. Dynamic contrast-enhanced CT and FDG PET were used to investigate blood flow, expressed as SPV, and metabolic relationships in non-small cell lung cancers (NSCLC) of varying size and stage. A significant correlation between SPV and FDG uptake was only found for tumours smaller than 4.5 cm2. Blood flow-metabolic relationships are not consistent in NSCLC but depend on tumour size and stage. Dynamic contrast-enhanced CT as an adjunct to an FDG study undertaken using integrated PET-CT offers an efficient way to augment the assessment of tumour biology with possible future application as part of clinical care. In summary the work has developed a method for standardizing the results of dynamic contrast-enhanced CT and investigated its potential when applied with FDG PET to improve the diagnosis and staging of cancers

    Comment on ``Consistent Sets Yield Contrary Inferences in Quantum Theory''

    Get PDF
    In a recent paper Kent has pointed out that in consistent histories quantum theory it is possible, given initial and final states, to construct two different consistent families of histories, in each of which there is a proposition that can be inferred with probability one, and such that the projectors representing these two propositions are mutually orthogonal. In this note we stress that, according to the rules of consistent history reasoning two such propositions are not contrary in the usual logical sense namely, that one can infer that if one is true then the other is false, and both could be false. No single consistent family contains both propositions, together with the initial and final states, and hence the propositions cannot be logically compared. Consistent histories quantum theory is logically consistent, consistent with experiment as far as is known, consistent with the usual quantum predictions for measurements, and applicable to the most general physical systems. It may not be the only theory with these properties, but in our opinion, it is the most promising among present possibilities.Comment: 2pages, uses REVTEX 3.

    The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment

    Full text link
    A procedure is described for efficiently finding the ground state energy and configuration for a Frenkel-Kontorova model in a periodic potential, consisting of N parabolic segments of identical curvature in each period, through a numerical solution of the convex minimization problem described in the preceding paper. The key elements are the use of subdifferentials to describe the structure of the minimization problem; an intuitive picture of how to solve it, based on motion of quasiparticles; and a fast linear optimization method with a reduced memory requirement. The procedure has been tested for N up to 200.Comment: 9 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 3 Postscript figures, accepted by Phys.Rev.B to be published together with cond-mat/970722

    High-resolution iron-line spectroscopy

    Get PDF
    Methods of resolving the iron lines, the most common X-ray emission lines in both galactic and extragalactic X-ray sources, are reviewed. A self-focussing crystal spectrometer is shown to be the most suitable instrument, and the optimum crystal geometry is spherical (Schnopper and Taylor 1980). The principles of operation of such a spherical crystal imaging spectrometer are examined and its sensitivity is shown to be two orders of magnitude better than a focal plane crystal spectrometer on AXAF. A Spacelab version of this payload would be very cost-effective
    • …
    corecore