15,896 research outputs found

    PrAGMATiC: a Probabilistic and Generative Model of Areas Tiling the Cortex

    Full text link
    Much of the human cortex seems to be organized into topographic cortical maps. Yet few quantitative methods exist for characterizing these maps. To address this issue we developed a modeling framework that can reveal group-level cortical maps based on neuroimaging data. PrAGMATiC, a probabilistic and generative model of areas tiling the cortex, is a hierarchical Bayesian generative model of cortical maps. This model assumes that the cortical map in each individual subject is a sample from a single underlying probability distribution. Learning the parameters of this distribution reveals the properties of a cortical map that are common across a group of subjects while avoiding the potentially lossy step of co-registering each subject into a group anatomical space. In this report we give a mathematical description of PrAGMATiC, describe approximations that make it practical to use, show preliminary results from its application to a real dataset, and describe a number of possible future extensions

    Polarized Diffuse Emission at 2.3 GHz in a High Galactic Latitude Area

    Full text link
    Polarized diffuse emission observations at 2.3 GHz in a high Galactic latitude area are presented. The 2\degr X 2\degr field, centred in (\alpha=5^h,\delta=-49\degr), is located in the region observed by the BOOMERanG experiment. Our observations has been carried out with the Parkes Radio telescope and represent the highest frequency detection done to date in low emission areas. Because of a weaker Faraday rotation action, the high frequency allows an estimate of the Galactic synchrotron contamination of the Cosmic Microwave Background Polarization (CMBP) that is more reliable than that done at 1.4 GHz. We find that the angular power spectra of the E- and B-modes have slopes of \beta_E = -1.46 +/- 0.14 and \beta_B = -1.87 +/- 0.22, indicating a flattening with respect to 1.4 GHz. Extrapolated up to 32 GHz, the E-mode spectrum is about 3 orders of magnitude lower than that of the CMBP, allowing a clean detection even at this frequency. The best improvement concerns the B-mode, for which our single-dish observations provide the first estimate of the contamination on angular scales close to the CMBP peak (about 2 degrees). We find that the CMBP B-mode should be stronger than synchrotron contamination at 90 GHz for models with T/S > 0.01. This low level could move down to 60-70 GHz the optimal window for CMBP measures.Comment: 5 pages, 6 figures, accepted for publication in MNRAS Letter

    Weak Lensing Determination of the Mass in Galaxy Halos

    Get PDF
    We detect the weak gravitational lensing distortion of 450,000 background galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by field galaxies of known redshift, and as such permits us to reconstruct the shear profile of the typical field galaxy halo in absolute physical units (modulo H_0), and to investigate the dependence of halo mass upon galaxy luminosity. This is also the first galaxy-galaxy lensing study for which the calibration errors are negligible. Within a projected radius of 200 \hkpc, the shear profile is consistent with an isothermal profile with circular velocity 164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this luminosity. This halo mass normalization, combined with the halo profile derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy halo, in good agreement with satellite galaxy studies. Given the known luminosity function of LCRS galaxies, and the assumption that M∝LÎČM\propto L^\beta for galaxies, we determine that the mass within 260\hkpc of normal galaxies contributes Ω=0.16±0.03\Omega=0.16\pm0.03 to the density of the Universe (for ÎČ=1\beta=1) or Ω=0.24±0.06\Omega=0.24\pm0.06 for ÎČ=0.5\beta=0.5. These lensing data suggest that 0.6<ÎČ<2.40.6<\beta<2.4 (95% CL), only marginally in agreement with the usual ÎČ≈0.5\beta\approx0.5 Faber-Jackson or Tully-Fisher scaling. This is the most complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response from the referee after four months

    Entanglement requirements for implementing bipartite unitary operations

    Full text link
    We prove, using a new method based on map-state duality, lower bounds on entanglement resources needed to deterministically implement a bipartite unitary using separable (SEP) operations, which include LOCC (local operations and classical communication) as a particular case. It is known that the Schmidt rank of an entangled pure state resource cannot be less than the Schmidt rank of the unitary. We prove that if these ranks are equal the resource must be uniformly (maximally) entangled: equal nonzero Schmidt coefficients. Higher rank resources can have less entanglement: we have found numerical examples of Schmidt rank 2 unitaries which can be deterministically implemented, by either SEP or LOCC, using an entangled resource of two qutrits with less than one ebit of entanglement.Comment: 7 pages Revte

    Consistent Resolution of Some Relativistic Quantum Paradoxes

    Get PDF
    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of Einstein-Podolsky-Rosen, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.Comment: Latex 42 pages, 7 figures in text using PSTrick

    P,T-Violating Nuclear Matrix Elements in the One-Meson Exchange Approximation

    Full text link
    Expressions for the P,T-violating NN potentials are derived for π\pi, ρ\rho and ω\omega exchange. The nuclear matrix elements for ρ\rho and ω\omega exchange are shown to be greatly suppressed, so that, under the assumption of comparable coupling constants, π\pi exchange would dominate by two orders of magnitude. The ratio of P,T-violating to P-violating matrix elements is found to remain approximately constant across the nuclear mass table, thus establishing the proportionality between time-reversal-violation and parity-violation matrix elements. The calculated values of this ratio suggest a need to obtain an accuracy of order 5×10−4 5 \times 10^{-4} for the ratio of the PT-violating to P-violating asymmetries in neutron transmission experiments in order to improve on the present limits on the isovector pion coupling constant.Comment: 17 pages, LaTeX, no figure

    Health professionals, their medical interventions and uncertainty : a study focusing on women at midlife

    Get PDF
    Health professionals face a tension between focusing on the individual and attending to health issues for the population as a whole. This tension is intrinsic to medicine and gives rise to medical uncertainty, which here is explored through accounts of three medical interventions focused on women at midlife: breast screening, hormone replacement therapy and bone densitometry. The accounts come from interviews with UK health professionals using these medical interventions in their daily work. Drawing on the analysis of Fox [(2002). Health and Healing: The public/private divide (pp. 236–253). London: Routledge] we distinguish three aspects of medical uncertainty and explore each one of them in relation to one of the interventions. First is uncertainty about the balance between the individual and distributive ethic of medicine, explored in relation to breast screening. Second is the dilemma faced by health professionals when using medicial evidence generated through studies of populations and applying this to individuals. We explore this dilemma for hormone replacement therapy. Thirdly there is uncertainty because of the lack of a conceptual framework for understanding how new micro knowledge, such as human genetic information, can be combined with knowledge of other biological and social dimensions of health. The accounts from the bone denistometry clinic indicate the beginnings of an understanding of the need for such a framework, which would acknowledge complexity, recognising that factors from many different levels of analysis, from heredity through to social factors, interact with each other and influence the individual and their health. However, our analysis suggests biomedicine continues to be dominated by an individualised, context free, concept of health and health risk with individuals alone responsible for their own health and for the health of the population. This may continue to dominate how we perceive responsibilities for health until we establish a conceptual framework that recognises the complex interaction of many factors at macro and micro level affecting health
    • 

    corecore