864 research outputs found
Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy
AbstractPaclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain.PerspectiveThis study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain
Variability monitoring of the hydroxyl maser emission in G12.889+0.489
Through a series of observations with the Australia Telescope Compact Array we have monitored the variability of ground-state hydroxyl maser emission from
G12.889+0.489 in all four Stokes polarisation products. These observations were motivated by the known periodicity in the associated 6.7-GHz methanol maser emission. A total of 27 epochs of observations were made over 16 months. No emission was seen from either the 1612 or 1720 MHz satellite line transitions (to a typical five sigma upper limit of 0.2 Jy). The peak flux densities of the 1665 and 1667 MHz emission were observed to vary at a level of ∼20% (with the exception of one epoch which dropped by 640%). There was no distinct flaring activity at any epoch, but there was a weak indication of periodic variability, with a period and phase of minimum emission similar to that of methanol. There is no significant variation in the polarised properties of the hydroxyl, with Stokes Q and U flux densities varying in accord with the Stokes I intensity (linear polarisation, P, varying by 620%) and the right and left circularly polarised components varying by 633% at 1665-MHz and 638% at 1667-MHz. These observations are the first monitoring observations of the hydroxyl maser emission from G12.889+0.489
Correlation inequalities for classical and quantum XY models
We review correlation inequalities of truncated functions for the classical
and quantum XY models. A consequence is that the critical temperature of the XY
model is necessarily smaller than that of the Ising model, in both the
classical and quantum cases. We also discuss an explicit lower bound on the
critical temperature of the quantum XY model.Comment: 13 pages. Submitted to the volume "Advances in Quantum Mechanics:
contemporary trends and open problems" of the INdAM-Springer series,
proceedings of the INdAM meeting "Contemporary Trends in the Mathematics of
Quantum Mechanics" (4-8 July 2016) organised by G. Dell'Antonio and A.
Michelangel
VIP enhances TRH-stimulated prolactin secretion of pituitary tumours Studies with 31P NMR
AbstractIntravenous thyrotrophin releasing hormone (TRH) caused a 6.5-fold increase in plasma prolactin (PRL) in rats carrying implanted pituitary tumours. Vasoactive intestinal polypeptide (VIP) had no effect, but TRH given after VIP raised TRH stimulated secretion 13-fold above basal. 31P NMR spectroscopy showed that VIP caused a decrease in high energy metabolites (depleted phosphocreatine, elevated inorganic phosphate and lowered intracellular pH). TRH alone caused a similar but smaller effect; given after VIP, it caused no detectable depletion. We suggest that the changes in high energy metabolite cencentrations reflect increased cellular energy consumption consistent with a priming process (stage 1) in PRL secretion, followed by hormone release (stage 2). VIP induces stage 1 whereas RTH induced both stages
Thermodynamic perturbation theory for dipolar superparamagnets
Thermodynamic perturbation theory is employed to derive analytical
expressions for the equilibrium linear susceptibility and specific heat of
lattices of anisotropic classical spins weakly coupled by the dipole-dipole
interaction. The calculation is carried out to the second order in the coupling
constant over the temperature, while the single-spin anisotropy is treated
exactly. The temperature range of applicability of the results is, for weak
anisotropy (A/kT << 1), similar to that of ordinary high-temperature
expansions, but for moderately and strongly anisotropic spins (A/kT > 1) it can
extend down to the temperatures where the superparamagnetic blocking takes
place (A/kT \sim 25), provided only the interaction strength is weak enough.
Besides, taking exactly the anisotropy into account, the results describe as
particular cases the effects of the interactions on isotropic (A = 0) as well
as strongly anisotropic (A \to \infty) systems (discrete orientation model and
plane rotators).Comment: 15 pages, 3 figure
Spacetime Information
In usual quantum theory, the information available about a quantum system is
defined in terms of the density matrix describing it on a spacelike surface.
This definition must be generalized for extensions of quantum theory which do
not have a notion of state on a spacelike surface. It must be generalized for
the generalized quantum theories appropriate when spacetime geometry fluctuates
quantum mechanically or when geometry is fixed but not foliable by spacelike
surfaces. This paper introduces a four-dimensional notion of the information
available about a quantum system's boundary conditions in the various sets of
decohering histories it may display. The idea of spacetime information is
applied in several contexts: When spacetime geometry is fixed the information
available through alternatives restricted to a spacetime region is defined. The
information available through histories of alternatives of general operators is
compared to that obtained from the more limited coarse- grainings of
sum-over-histories quantum mechanics. The definition of information is
considered in generalized quantum theories. We consider as specific examples
time-neutral quantum mechanics with initial and final conditions, quantum
theories with non-unitary evolution, and the generalized quantum frameworks
appropriate for quantum spacetime. In such theories complete information about
a quantum system is not necessarily available on any spacelike surface but must
be searched for throughout spacetime. The information loss commonly associated
with the ``evolution of pure states into mixed states'' in black hole
evaporation is thus not in conflict with the principles of generalized quantum
mechanics.Comment: 47pages, 2 figures, UCSBTH 94-0
Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation
We examine the time-reversal-violating nuclear ``Schiff moment'' that induces
electric dipole moments in atoms. After presenting a self-contained derivation
of the form of the Schiff operator, we show that the distribution of Schiff
strength, an important ingredient in the ground-state Schiff moment, is very
different from the electric-dipole-strength distribution, with the Schiff
moment receiving no strength from the giant dipole resonance in the
Goldhaber-Teller model. We then present shell-model calculations in light
nuclei that confirm the negligible role of the dipole resonance and show the
Schiff strength to be strongly correlated with low-lying octupole strength.
Next, we turn to heavy nuclei, examining recent arguments for the strong
enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg,
for example. We concur that there is a significant enhancement while pointing
to effects neglected in previous work (both in the octupole-deformed nuclides
and 199Hg) that may reduce it somewhat, and emphasizing the need for
microscopic calculations to resolve the issue. Finally, we show that static
octupole deformation is not essential for the development of collective Schiff
moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex
Specific pathway abundances in the neonatal calf faecal microbiome are associated with susceptibility to Cryptosporidium parvum infection: a metagenomic analysis.
Cryptosporidium parvum is the main cause of calf scour worldwide. With limited therapeutic options and research compared to other Apicomplexa, it is important to understand the parasites' biology and interactions with the host and microbiome in order to develop novel strategies against this infection. The age-dependent nature of symptomatic cryptosporidiosis suggests a link to the undeveloped immune response, the immature intestinal epithelium, and its associated microbiota. This led us to hypothesise that specific features of the early life microbiome could predict calf susceptibility to C. parvum infection. In this study, a single faecal swab sample was collected from each calf within the first week of life in a cohort of 346 animals. All 346 calves were subsequently monitored for clinical signs of cryptosporidiosis, and calves that developed diarrhoea were tested for Rotavirus, Coronavirus, E. coli F5 (K99) and C. parvum by lateral flow test (LFT). A retrospective case–control approach was taken whereby a subset of healthy calves (Control group; n = 33) and calves that went on to develop clinical signs of infectious diarrhoea and test positive for C. parvum infection via LFT (Cryptosporidium-positive group; n = 32) were selected from this cohort, five of which were excluded due to low DNA quality. A metagenomic analysis was conducted on the faecal microbiomes of the control group (n = 30) and the Cryptosporidium-positive group (n = 30) prior to infection, to determine features predictive of cryptosporidiosis. Taxonomic analysis showed no significant differences in alpha diversity, beta diversity, and taxa relative abundance between controls and Cryptosporidium-positive groups. Analysis of functional potential showed pathways related to isoprenoid precursor, haem and purine biosynthesis were significantly higher in abundance in calves that later tested positive for C. parvum (q ≤ 0.25). These pathways are either absent or streamlined in the C. parvum parasites. Though the de novo production of isoprenoid precursors, haem and purines are absent, C. parvum has been shown to encode enzymes that catalyse the downstream reactions of these pathway metabolites, indicating that C. parvum may scavenge those products from an external source. The host has previously been put forward as the source of essential metabolites, but our study suggests that C. parvum may also be able to harness specific metabolic pathways of the microbiota in order to survive and replicate. This finding is important as components of these microbial pathways could be exploited as potential therapeutic targets for the prevention or mitigation of cryptosporidiosis in bovine neonates
Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes
Spacetime must be foliable by spacelike surfaces for the quantum mechanics of
matter fields to be formulated in terms of a unitarily evolving state vector
defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike
surfaces, as in the case of spacetimes with closed timelike curves, a more
general formulation of quantum mechanics is required. In such generalizations
the transition matrix between alternatives in regions of spacetime where states
{\it can} be defined may be non-unitary. This paper describes a generalized
quantum mechanics whose probabilities consistently obey the rules of
probability theory even in the presence of such non-unitarity. The usual notion
of state on a spacelike surface is lost in this generalization and familiar
notions of causality are modified. There is no signaling outside the light
cone, no non-conservation of energy, no ``Everett phones'', and probabilities
of present events do not depend on particular alternatives of the future.
However, the generalization is acausal in the sense that the existence of
non-chronal regions of spacetime in the future can affect the probabilities of
alternatives today. The detectability of non-unitary evolution and violations
of causality in measurement situations are briefly considered. The evolution of
information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0
Interleukin-1©¬ (IL-1©¬), IL-1 receptor antagonist, and TNF¥á production in whole blood
Contains fulltext :
4746.pdf (publisher's version ) (Open Access
- …