6,195 research outputs found

    Improved limit on the permanent electric dipole moment of 199Hg

    Full text link
    We report the results of a new experimental search for a permanent electric dipole moment of 199Hg utilizing a stack of four vapor cells. We find d(199Hg) = (0.49 \pm 1.29_stat \pm 0.76_syst) x 10^{-29} e cm, and interpret this as a new upper bound, |d(199Hg)| < 3.1 x 10^{-29} e cm (95% C.L.). This result improves our previous 199Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.Comment: 4 pages, 4 figures. additional reference, minor edits in response to reviewer comment

    Mid-infrared Variability from the Spitzer Deep Wide-field Survey

    Get PDF
    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg^2 of the NOAO Deep Wide Field Survey Boötes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r > 0.8) and that their joint variance (σ_(12)) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBoötes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S _0 ≃ 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities

    Measurement of Linear Stark Interference in 199Hg

    Full text link
    We present measurements of Stark interference in the 61S0^1S_0 →\rightarrow 63P1^3P_1 transition in 199^{199}Hg, a process whereby a static electric field EE mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to EE-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, aSIa_{SI} = (aM1+aE2)(a_{M1} + a_{E2}) = (5.8 ±\pm 1.5)×10−9\times 10^{-9} (kV/cm)−1^{-1}, agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the 199^{199}Hg EDM search apparatus to resolve non-trivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.Comment: 4 pages, 4 figures, 1 table; revised in response to reviewer comment

    Heterotic Compactification, An Algorithmic Approach

    Get PDF
    We approach string phenomenology from the perspective of computational algebraic geometry, by providing new and efficient techniques for proving stability and calculating particle spectra in heterotic compactifications. This is done in the context of complete intersection Calabi-Yau manifolds in a single projective space where we classify positive monad bundles. Using a combination of analytic methods and computer algebra we prove stability for all such bundles and compute the complete particle spectrum, including gauge singlets. In particular, we find that the number of anti-generations vanishes for all our bundles and that the spectrum is manifestly moduli-dependent.Comment: 36 pages, Late

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA

    The characteristics and experiences of anticipatory mourning in caregivers of teenagers and young adults

    Get PDF
    This article reports a systematic review of literature undertaken to identify characteristics and experiences of anticipatory mourning in caregivers of teenagers and young adults with life-limiting or life-threatening conditions. A comprehensive literature search was conducted using the key words ‘anticipatory’, ‘mourning’, ‘grief’, and synonyms. This review focused on six studies that met inclusion criteria and reported characteristics of anticipatory mourning in caregivers of teenagers and young adults. Characteristics and experiences were sorted into four main themes: symptoms; a sense of loss; caregiver behaviour; and the unique experience of caring for, or losing, a teenager or young adult. The review suggests that there are characteristics and experiences of anticipatory mourning that are unique to caregivers of this age group. The review also suggests that consideration of anticipatory mourning is important in offering holistic care to young adults and their caregivers, and points to the need for further research in this area

    Kirchhoff's Rule for Quantum Wires

    Full text link
    In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with nn open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with nn channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0E>0 is explicitly given in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low energy behaviour of one theory gives the high energy behaviour of the transformed theory. Finally we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs only use known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitean symplectic forms.Comment: 40 page

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Fracture toughness in some hetero-modulus composite carbides: carbon inclusions and voids. Advances in Applied Ceramics

    Get PDF
    Fracture toughness of ceramics in some cases can be significantly improved by the inclusion of low-modulus phase and even voids. Structure and mechanical characteristics of dense ceramic composites synthesised by reactive hot pressing of TiC-B4C powder mixtures at 1800 - 1950°С under 30MPa during 16 minutes are investigated. X-Ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM and EDX) have shown that during hot pressing solid phase chemical interaction 2TiС + B4C = 2TiВ2 + 3С has occurred resulting in TiB2-TiC-C, TiB2-C or TiB2-B4C-C hetero-modulus composite formation with approximately 1μm carbon precipitates. The volume of such precipitated carbon can reach 35 vol. %. The fracture toughness depends on the precipitate size and amount of graphite precipitation and has a distinct maximum K1C = 10MPa∙m1/2 at nearly 7 vol. % . Such fracture toughness behaviour is explained by the proposed model of crack propagation and the model-based assessment of hetero-modulus ceramic fracture toughness. It is shown that voids and low modulus carbon inclusions blunt the cracks and can increase ceramic toughness. The later has been demonstrated in the another carbon containing ceramic Cr2AlC, so named MAX phase material, when thin film fracture resistance increases as the ceramic was deposited to be porous
    • …
    corecore