27 research outputs found

    A General Bayesian Approach to Analyzing Diallel Crosses of Inbred Strains

    Get PDF
    The classic diallel takes a set of parents and produces offspring from all possible mating pairs. Phenotype values among the offspring can then be related back to their respective parentage. When the parents are diploid, sexed, and inbred, the diallel can characterize aggregate effects of genetic background on a phenotype, revealing effects of strain dosage, heterosis, parent of origin, epistasis, and sex-specific versions thereof. However, its analysis is traditionally intricate, unforgiving of unplanned missing information, and highly sensitive to imbalance, making the diallel unapproachable to many geneticists. Nonetheless, imbalanced and incomplete diallels arise frequently, albeit unintentionally, as by-products of larger-scale experiments that collect F1 data, for example, pilot studies or multiparent breeding efforts such as the Collaborative Cross or the Arabidopsis MAGIC lines. We present a general Bayesian model for analyzing diallel data on dioecious diploid inbred strains that cleanly decomposes the observed patterns of variation into biologically intuitive components, simultaneously models and accommodates outliers, and provides shrinkage estimates of effects that automatically incorporate uncertainty due to imbalance, missing data, and small sample size. We further present a model selection procedure for weighing evidence for or against the inclusion of those components in a predictive model. We evaluate our method through simulation and apply it to incomplete diallel data on the founders and F1's of the Collaborative Cross, robustly characterizing the genetic architecture of 48 phenotypes

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    The significance of bone marrow examination in certain diseases of the bovine and canine

    Get PDF
    Digitized by Kansas State University Librarie

    Map of Preble County, Ohio /

    No full text
    "Copyright secured by Griffing Gordon & Co. 1887."LC Land ownership maps, 665Includes 12 townships statistical tables and business directories

    An application of the method of characteristics to axially symmetric supersonic flow

    Get PDF
    The method of characteristics for three dimensional axially symmetric bodies was used to determine the velocity distribution about the nose of the Corporal E rocket, a rocket projectile, for Mach numbers 2 and 4. From the velocities the pressure distribution was determined and a drag coefficient computed. For a starting point the nose of the projectile was approximated for a short distance by a cone and the Taylor-Maccoll solution to this problem was used. This solution gave the angle of shockwave and the body. The Sauer graphical-numerical iteration method was used for the remainder of the solution. Preliminary calculations and the work for Mach number 3 were carried out by Dr. H. K. Forster to whom we are indebted for instruction and aid with this work
    corecore