98 research outputs found

    Landau damping in dilute Bose gases

    Full text link
    Landau damping in weakly interacting Bose gases is investigated by means of perturbation theory. Our approach points out the crucial role played by Bose-Einstein condensation and yields an explicit expression for the decay rate of elementary excitations in both uniform and non uniform gases. Systematic results are derived for the phonon width in homogeneous gases interacting with repulsive forces. Special attention is given to the low and high temperature regimes.Comment: 11 pages, latex, 1 figure available upon request. The paper accepted for publication in Phys. Lett.

    Coupled Hartree-Fock-Bogoliubov kinetic equations for a trapped Bose gas

    Full text link
    Using the Kadanoff-Baym non-equilibrium Green's function formalism, we derive the self-consistent Hartree-Fock-Bogoliubov (HFB) collisionless kinetic equations and the associated equation of motion for the condensate wavefunction for a trapped Bose-condensed gas. Our work generalizes earlier work by Kane and Kadanoff (KK) for a uniform Bose gas. We include the off-diagonal (anomalous) pair correlations, and thus we have to introduce an off-diagonal distribution function in addition to the normal (diagonal) distribution function. This results in two coupled kinetic equations. If the off-diagonal distribution function can be neglected as a higher-order contribution, we obtain the semi-classical kinetic equation recently used by Zaremba, Griffin and Nikuni (based on the simpler Popov approximation). We discuss the static local equilibrium solution of our coupled HFB kinetic equations within the semi-classical approximation. We also verify that a solution is the rigid in-phase oscillation of the equilibrium condensate and non-condensate density profiles, oscillating with the trap frequency.Comment: 25 page

    Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas

    Full text link
    Starting from the quantum kinetic equation for the non-condensate atoms and the generalized Gross-Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas at finite temperatures. We follow the standard Chapman-Enskog procedure, starting from a solution of the kinetic equation corresponding to the complete local equilibrium between the condensate and the non-condensate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equilibrium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the diffusive local equilibrium between the condensate and the non-condensate (recently considered by Zaremba, Nikuni and Griffin) can be described by four frequency-dependent second viscosity transport coefficients. We also derive explicit formulas for all the transport coefficients. These results are used to introduce two new characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.Comment: 26 pages, 3 postscript figures, submitted to PR

    Damped Bogoliubov excitations of a condensate interacting with a static thermal cloud

    Full text link
    We calculate the damping of condensate collective excitations at finite temperatures arising from the lack of equilibrium between the condensate and thermal atoms. We neglect the non-condensate dynamics by fixing the thermal cloud in static equilibrium. We derive a set of generalized Bogoliubov equations for finite temperatures that contain an explicit damping term due to collisional exchange of atoms between the two components. We have numerically solved these Bogoliubov equations to obtain the temperature dependence of the damping of the condensate modes in a harmonic trap. We compare these results with our recent work based on the Thomas-Fermi approximation.Comment: 9 pages, 3 figures included. Submitted to PR

    Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    Full text link
    We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a BCS-BEC crossover of the Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase transition continuously changes into the BEC-type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local density approximation (LDA). We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase transition temperature Tc, reflecting the change of the dominant particles going from Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are shown to first appear well above Tc. We also discuss the "phase diagram" above Tc as a function of the tunable threshold energy. We introduce a characteristic temperature T* describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA

    On the Origin of the Outgoing Black Hole Modes

    Get PDF
    The question of how to account for the outgoing black hole modes without drawing upon a transplanckian reservoir at the horizon is addressed. It is argued that the outgoing modes must arise via conversion from ingoing modes. It is further argued that the back-reaction must be included to avoid the conclusion that particle creation cannot occur in a strictly stationary background. The process of ``mode conversion" is known in plasma physics by this name and in condensed matter physics as ``Andreev reflection" or ``branch conversion". It is illustrated here in a linear Lorentz non-invariant model introduced by Unruh. The role of interactions and a physical short distance cutoff is then examined in the sonic black hole formed with Helium-II.Comment: 12 pages, plain latex, 2 figures included using psfig; Analogy to ``Andreev reflection" in superfluid systems noted, references and acknowledgment added, format changed to shorten tex

    Finite temperature theory of the trapped two dimensional Bose gas

    Full text link
    We present a Hartree-Fock-Bogoliubov (HFB) theoretical treatment of the two-dimensional trapped Bose gas and indicate how semiclassical approximations to this and other formalisms have lead to confusion. We numerically obtain results for the fully quantum mechanical HFB theory within the Popov approximation and show that the presence of the trap stabilizes the condensate against long wavelength fluctuations. These results are used to show where phase fluctuations lead to the formation of a quasicondensate.Comment: 4 pages, 3 figure

    Lattice Study of the Decay B^0-bar -> rho^+ l^- nu_l-bar: Model-Independent Determination of |V_{ub}|

    Full text link
    We present results of a lattice computation of the vector and axial-vector current matrix elements relevant for the semileptonic decay B^0-bar -> rho^+ l^- nu_l-bar. The computations are performed in the quenched approximation of lattice QCD on a 24^3 x 48 lattice at beta = 6.2, using an O(a) improved fermionic action. Our principal result is for the differential decay rate, dGamma/dq^2, for the decay B^0-bar -> rho^+ l^- nu_l-bar in a region beyond the charm threshold, allowing a model-independent extraction of |V_{ub}| from experimental measurements. Heavy quark symmetry relations between radiative and semileptonic decays of B-bar mesons into light vector mesons are also discussed.Comment: 22 pages LaTeX-209 (dependent on settings in a4.sty), 23 PostScript figures included with epsf.sty. Complete PostScript file including figures available at http://wwwhep.phys.soton.ac.uk/hepwww/papers/shep9518

    Adiabatic Output Coupling of a Bose Gas at Finite Temperatures

    Get PDF
    We develop a general theory of adiabatic output coupling from trapped atomic Bose-Einstein Condensates at finite temperatures. For weak coupling, the output rate from the condensate, and the excited levels in the trap, settles in a time proportional to the inverse of the spectral width of the coupling to the output modes. We discuss the properties of the output atoms in the quasi-steady-state where the population in the trap is not appreciably depleted. We show how the composition of the output beam, containing condensate and thermal component, may be controlled by changing the frequency of the output coupler. This composition determines the first and second order coherence of the output beam. We discuss the changes in the composition of the bose gas left in the trap and show how nonresonant output coupling can stimulate either the evaporation of thermal excitations in the trap or the growth of non-thermal excitations, when pairs of correlated atoms leave the condensate.Comment: 22 pages, 6 Figs. To appear in Physical Review A All the typos from the previous submission have been fixe

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.
    • …
    corecore