137 research outputs found

    A Conceptual Framework for Predictability Studies

    Get PDF

    Relating the diffusive salt flux just below the ocean surface to boundary freshwater and salt fluxes

    Get PDF
    We detail the physical means whereby boundary transfers of freshwater and salt induce diffusive fluxes of salinity. Our considerations focus on the kinematic balance between the diffusive fluxes of salt and freshwater, with this balance imposed by mass conservation for an element of seawater. The flux balance leads to a specific form for the diffusive salt flux immediately below the ocean surface and, in the Boussinesq approximation, to a specific form for the salinity flux. This note clarifies conceptual and formulational ambiguities in the literature concerning the surface boundary condition for the salinity equation and for the contribution of freshwater to the buoyancy budget

    On Pacific Subtropical Cell Variability over the Second Half of the Twentieth Century

    Get PDF
    Abstract The evolution of the Pacific subtropical cells (STC) is presented for the period 1948–2007. Using ocean models of different resolutions forced with interannually varying atmospheric forcing datasets, the mechanisms responsible for the observed STC weakening and late recovery during the period of study are analyzed. As a result of the STC weakening (strengthening), warming (cooling) trends are found in the equatorial Pacific sea surface temperatures (SSTs). Model results agree well with observed estimates of STC transport, STC convergence, and equatorial SST anomalies. It is shown that subtropical atmospheric variability is the primary driver of the STC and equatorial SST low-frequency evolution and is responsible for both the slowdown during the second half of the twentieth century and the rebound at the end of the century. Subtropically forced STC variability is identified as a major player in the generation of equatorial Pacific decadal SST anomalies, pacing tropical Pacific natural climate variability on interdecadal time scales, as observed in historical records. The natural mode of variability has implications for the evolution of equatorial SST in the coming decades under the concomitant effects of climate change

    Global Cascade of Kinetic Energy in the Ocean and the Atmospheric Imprint

    Full text link
    We present the first estimate for the ocean's global scale-transfer of kinetic energy (KE), across scales from 10~km to 40000~km. We show the existence of oceanic KE transfer between gyre-scales and mesoscales induced by the atmosphere's Hadley, Ferrel, and polar cells, and intense downscale KE transfer associated with the Inter-Tropical Convergence Zone. We report peak upscale transfer of 300 GigaWatts across mesoscales of 120~km in size, roughly 1/3rd the energy input by winds into the oceanic general circulation. This "cascade" penetrates almost the entire water column, with nearly three quarters of it occurring south of 15∘^\circS. The mesoscale cascade has a self-similar seasonal cycle with characteristic lag-time of ≈27 \mathbf{\approx27~}days per octave of length-scales such that transfer across 50~km peaks in spring while transfer across 500~km peaks in summer. KE content of those mesoscales follows the same self-similar cycle but peaks ≈40 \mathbf{\approx40~}days after the peak cascade, suggesting that energy transferred across a scale is primarily deposited at a scale 4×\times larger

    Exploring the non-stationarity of coastal sea level probability distributions

    Full text link
    Studies agree on a significant global mean sea level rise in the 20th century and its recent 21st century acceleration in the satellite record. At regional scale, the evolution of sea level probability distributions is often assumed to be dominated by changes in the mean. However, a quantification of changes in distributional shapes in a changing climate is currently missing. To this end, we propose a novel framework quantifying significant changes in probability distributions from time series data. The framework first quantifies linear trends in quantiles through quantile regression. Quantile slopes are then projected onto a set of four orthogonalorthogonal polynomials quantifying how such changes can be explained by independentindependent shifts in the first four statistical moments. The framework proposed is theoretically founded, general and can be applied to any climate observable with close-to-linear changes in distributions. We focus on observations and a coupled climate model (GFDL-CM4). In the historical period, trends in coastal daily sea level have been driven mainly by changes in the mean and can therefore be explained by a shift of the distribution with no change in shape. In the modeled world, robust changes in higher order moments emerge with increasing CO2\text{CO}_{2} concentration. Such changes are driven in part by ocean circulation alone and get amplified by sea level pressure fluctuations, with possible consequences for sea level extremes attribution studies

    Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows

    Get PDF
    The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope

    Atlantic multi-decadal oscillation covaries with Agulhas leakage

    Get PDF
    The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage’, forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlanti
    • …
    corecore