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ABSTRACT

A conceptual framework is presented for a unified treatment of issues arising in a variety of predictability
studies. The predictive power (PP), a predictability measure based on information–theoretical principles, lies at
the center of this framework. The PP is invariant under linear coordinate transformations and applies to mul-
tivariate predictions irrespective of assumptions about the probability distribution of prediction errors. For
univariate Gaussian predictions, the PP reduces to conventional predictability measures that are based upon the
ratio of the rms error of a model prediction over the rms error of the climatological mean prediction.

Since climatic variability on intraseasonal to interdecadal timescales follows an approximately Gaussian
distribution, the emphasis of this paper is on multivariate Gaussian random variables. Predictable and unpre-
dictable components of multivariate Gaussian systems can be distinguished by predictable component analysis,
a procedure derived from discriminant analysis: seeking components with large PP leads to an eigenvalue problem,
whose solution yields uncorrelated components that are ordered by PP from largest to smallest.

In a discussion of the application of the PP and the predictable component analysis in different types of
predictability studies, studies are considered that use either ensemble integrations of numerical models or au-
toregressive models fitted to observed or simulated data.

An investigation of simulated multidecadal variability of the North Atlantic illustrates the proposed meth-
odology. Reanalyzing an ensemble of integrations of the Geophysical Fluid Dynamics Laboratory coupled general
circulation model confirms and refines earlier findings. With an autoregressive model fitted to a single integration
of the same model, it is demonstrated that similar conclusions can be reached without resorting to computationally
costly ensemble integrations.

1. Introduction

Since Lorenz (1963) realized that chaotic dynamics
may set bounds on the predictability of weather and
climate, assessing the predictability of various processes
in the atmosphere–ocean system has been the objective
of numerous studies. These studies are of two kinds
(Lorenz 1975). Predictability studies of the first kind
address how the uncertainties in an initial state of the
climate system affect the prediction of a later state. Ini-
tial uncertainties amplify as the prediction lead time
increases, thus limiting predictability of the first kind.
For example, in weather forecasting, the uncertainty in
the predicted state reaches, at a lead time of a few weeks,
the climatological uncertainty, the uncertainty as to
which atmospheric state may be realized when only the
climatological mean is available as a prediction. Day-
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to-day weather variations are not predictable beyond this
lead time.

Predictability studies of the second kind address the
predictability of the response of the climate system to
changes in boundary conditions. The fact that the state
of the climate system is not completely determined by
the boundary conditions limits predictability of the sec-
ond kind. For example, the internal variability of the
atmosphere renders a multitude of atmospheric states
consistent with a configuration of sea surface temper-
atures (SSTs). It is uncertain which atmospheric state
will be realized at a given time, even if the SST con-
figuration at that time is known. A deviation of the SST
from its climatological mean results in a predictable
atmospheric response only if it reduces the uncertainty
as to which atmospheric state may be realized to less
than the climatological uncertainty.

These two types of predictability studies have a num-
ber of common features. Each, of course, requires a
model that provides predictions of the process under
consideration. Hence, predictability is always to be un-
derstood as predictability within a given model frame-
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work. Each type of study also requires a quantitative
measure of predictability. Suggestions for such mea-
sures abound. Shukla (1981, 1985), Hayashi (1986),
Murphy (1988), and Griffies and Bryan (1997b), for
example, offer quantitative definitions of the term pre-
dictability itself, and Stern and Miyakoda (1995) define
the concept of reproducibility. All of the above mea-
sures are based, in one way or another, on comparing
the root-mean-square (rms) error of a univariate model
prediction with the rms error of the prediction that con-
sists of the climatological mean. The examined process
is considered predictable if the rms error of the model
prediction is significantly smaller than the rms error of
the climatological mean prediction. Such predictability
measures have made possible the definition of local pre-
dictability indexes and the study of regional variations
in the predictability of geophysical fields [see Shukla
(1985) for a review].

Difficulties arise, however, when one tries to gener-
alize these predictability measures for univariate vari-
ables to the multivariate case, as one does, for example,
when interested not in estimating the predictability of
a single scalar variable grid point by grid point, but in
estimating the overall predictability of several geo-
physical fields in some larger region. The initialization
of ensemble integrations for numerical weather predic-
tions (see, e.g., Palmer 1996, Palmer et al. 1998, and
references therein) is an example of an inherently mul-
tivariate problem. Difficulties for multivariate predic-
tions arise because the rms prediction error depends on
the basis in which the fields are represented. This means
that, although there is not always a natural choice of a
metric to measure the prediction error, the outcome of
the analysis depends on which metric is chosen.

Another shortcoming of error-based predictability in-
dexes is that they assume the error distributions to be
approximately Gaussian. This may be too restrictive an
assumption in many cases. The potential predictive util-
ity of Anderson and Stern (1996) partially overcomes
this drawback of more traditional predictability mea-
sures. Anderson and Stern do not merely compare the
rms error of a model-derived prediction with that of the
climatological mean prediction—that is, the standard
deviations of the corresponding error distributions—but
they compare the entire error distributions, without mak-
ing assumptions about their shape. If the error distri-
butions differ significantly, potential predictive utility
exists; otherwise, it does not. However, in contrast to
the ratio of the rms errors, for example, the potential
predictive utility does not give a measure of a predic-
tion’s ‘‘degree of uncertainty’’ but only makes state-
ments about whether or not a given model prediction is
better than the climatological mean prediction.

In addition to these drawbacks, many predictability
measures have been defined only for specific study de-
signs. Even in recent studies, authors have found it nec-
essary to introduce predictability measures of their own.
This circumstance highlights the lack of an overarching

conceptual framework that is sufficiently general to en-
compass currently used study designs. Still, whether one
examines predictability of the first kind or predictability
of the second kind, whether one employs comprehensive
general circulation models (GCMs) to generate ensem-
ble integrations or simpler empirical models fitted to
observations—all predictability studies have some es-
sential features in common.

Focusing on the fundamental structure that all pre-
dictability studies share, we will here develop a unified
conceptual framework. In section 2, we first reduce the
stochastic problems arising in predictability studies to
their basic structure by stripping them of application-
specific details; at the same time, we introduce the ter-
minology and notation used throughout the remainder
of this paper. In this general context, we then turn to
address issues that frequently arise in predictability stud-
ies.

The key constituent of the methodology to be pre-
sented is a predictability index that uses concepts from
information theory to measure the uncertainty of a pre-
diction. [Shannon and Weaver (1949), Brillouin (1956),
and Papoulis (1991, chapter 15) provide surveys on in-
formation theory.] The information–theoretical predict-
ability index, the predictive power (PP), is defined in
section 3. The PP applies to univariate as well as to
multivariate predictions. In contrast to measures based
on rms errors, the PP is invariant under arbitrary linear
coordinate transformations; thus, the difficulties arising
from the arbitrariness of an error metric are circum-
vented. Moreover, in its most general form, the PP does
not rely on specific assumptions about either the dis-
tributions of the random variables involved or the mod-
eling framework. In the special case of univariate and
normally distributed predictions, the PP reduces to the
ratio of the rms prediction error over the rms error of
the climatological mean prediction (or, according to our
conventions, to one minus this ratio). The PP can there-
fore be understood as a generalization of the above-
cited predictability indexes.

Since empirical evidence (e.g., Toth 1991) suggests
that aggregated climatic variables, such as space or time
averages of geophysical fields, follow an approximately
Gaussian distribution, the bulk of this paper focuses on
multivariate Gaussian random variables. For Gaussian
systems, questions such as, ‘‘what are the most pre-
dictable features of the system?’’ can be answered in a
systematic manner. When the PP is used as the measure
of predictive information in multivariate predictions,
then the most predictable linear combination of state
space variables, or the most predictable component, is
the one that maximizes the PP. In section 4, we adapt
a procedure from discriminant analysis (see, e.g.,
McLachlan 1992) to extract predictable components of
a system: seeking components with large PP leads to
an eigenvalue problem, whose solution yields uncor-
related components that are ordered by PP from largest
to smallest. This way of extracting a system’s predict-
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able components, the predictable component analysis,
is then compared with principal component analysis and
with recently proposed approaches for determining pre-
dictable components (e.g., Hasselmann 1993).

Sections 5 and 6 give details for the application of
the general methodology to specific types of predict-
ability studies. Section 5 deals with studies that use
ensemble integrations to estimate predictability; pre-
dictability studies of both the first and the second kind
are considered. Section 6 discusses how autoregressive
models, a paradigmatic class of empirical models, can
be employed to assess the predictability of processes in
the climate system.

In section 7, we illustrate the PP concept and the
predictable component analysis by investigating the pre-
dictability of multidecadal North Atlantic variability
(Halliwell 1997, 1998; Griffies and Bryan 1997a,b).
Two approaches are taken; first, ensemble integrations
of a coupled atmosphere–ocean GCM, as performed by
Griffies and Bryan (1997b), are reanalyzed with the new
methods; this will confirm and refine the earlier findings
of Griffies and Bryan. Second, it will be demonstrated
that with an autoregressive model fitted to a single in-
tegration of the same GCM, similar conclusions can be
reached without performing computationally costly en-
semble integrations.

In section 8, we summarize our conclusions and com-
ment on their relevance for future research. The appen-
dix contains computational details of procedures laid
out in the body of this paper.

2. The basic structure of predictability studies

Suppose the state of a time-evolving system at time
instant n is represented by an m-dimensional state vector
Xn. Since we are concerned with the evolution of dis-
tributions of states, rather than the evolution of a single
state, we take a stochastic perspective on the dynamics
of the system: the state is viewed as a random vector
and as such is characterized by a probability distribution
function whose domain is the state space, the set of all
values the state vector can possibly attain. Given, for
example, the time evolution of a geophysical field, the
state space may be the m-dimensional vector space of
a representation of the field by m linearly independent
grid point values or spectral coefficients. The probability
distribution associated with the state Xn is the clima-
tological distribution of the geophysical field and re-
flects the uncertainty in the system’s state when the cli-
matological mean is the only available predictive in-
formation. In this stochastic framework, a particular ob-
servation xn is called a realization of the random state
vector Xn. (To avoid ambiguities, we make the distinc-
tion between a random variable and one of its realiza-
tions explicit by using capital letters for the random
variable and lowercase for the realization.)

Consider now the prediction of the state xn. An in-
dividual prediction x̂n is usually a function of the states

at previous instants n 2 1, n 2 2, etc. The prediction
might, for example, be obtained as the mean of an en-
semble of GCM integrations. In predictability studies
of the first kind, each member of the ensemble corre-
sponds to a different initial condition drawn from an
initial state whose probability distribution reflects ob-
servational uncertainties. In predictability studies of the
second kind, the ensemble members form a sample of
the distribution of those states that are consistent with
a given boundary condition—with a particular config-
uration of SST, for example. As an alternative to en-
semble integrations, the prediction may be based on an
empirical model fitted to observed or simulated data.

The index n labels the time for which a prediction is
made. In predictability studies of the first kind, the index
n designates the forecast lead time. Since the climato-
logical distribution associated with the state Xn does not
vary much over typical forecast lead times, it is usually
assumed to be stationary and hence independent of n.
In predictability studies of the second kind, the index
n usually designates the time of year for which a pre-
diction is made—a particular season, for example—and
the climatological distribution associated with the state
Xn depends on n. We will discuss the analysis of a
prediction for a single instant n, but to make the de-
pendence on the prediction time explicit, we still index
prediction-time dependent variables by n.

Because of the system’s stochastic nature, the pre-
diction x̂n does not necessarily coincide with the actual
realization xn but is afflicted with a random prediction
error en [ xn 2 x̂n. The probability distribution of the
corresponding random variable En reflects the uncer-
tainty that remains in the state after a prediction has
become available. If the prediction is obtained as the
mean of an ensemble, the differences between the in-
dividual ensemble members and their mean form a sam-
ple of the prediction error distribution. If the prediction
is obtained from an empirical model, the distribution of
prediction errors must be derived from the assumptions
intrinsic to the empirical modeling framework.

Since the prediction error en is the difference between
the actually realized state xn and the prediction x̂n the
realization xn of the system’s state can be written as the
sum xn 5 x̂n 1 en. Expressed in terms of the corre-
sponding random variables, this statement reads

Xn 5 X̂n 1 En,

where the predictor X̂n is the random function of which
the prediction x̂n is a realization. Fundamental to the
following line of reasoning is the interpretation of the
associated probability distributions: the distribution of
the state Xn is the climatological distribution, which
reflects the prior uncertainty as to which state may be
realized before any predictive information besides the
climatological mean is available; the distribution of the
prediction error En reflects the posterior uncertainty that
remains in the state after a prediction has become avail-
able.
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Here we are exclusively concerned with how the ran-
dom nature of the prediction error affects the predict-
ability of state vector realizations. We assume that the
prediction error has no systematic component, which
would show as a nonzero error mean; that is, we assume
that the predictor is unbiased.1 The condition of unbi-
asedness is automatically satisfied if the prediction is
obtained as the mean of an ensemble (see section 5).
Note, however, that unbiasedness in our context does
not necessarily mean that the model provides unbiased
predictions of the actual empirical system being mod-
eled; we stay exclusively within the framework set by
the model that provides the predictions and merely re-
quire that, within this framework, the prediction error
have zero mean.

Within the given modeling framework, we now ask
the questions, how much information about state real-
izations does the predictor provide? and, if the system
has any predictable components, which of those are the
most predictable? More precisely, we want an appro-
priate measure of predictability and a decomposition of
the state space into subspaces that are ordered from most
predictable to least predictable.

3. The predictive power

a. Derivation of the general form

If no more specific prediction for xn is available than
the climatological mean, then the uncertainty in the sys-
tem’s state is the climatological or prior uncertainty as-
sociated with the climatological probability density that
characterizes the state vector Xn. The effect of the pre-
dictor is to provide predictive information on the sys-
tem’s state, thus reducing the state’s prior uncertainty
to the posterior uncertainty that remains after a specific
prediction has become available. A state is not pre-
dictable when its posterior uncertainty is as large as its
prior uncertainty—that is, when the prediction does not
contain predictive information in excess of the clima-
tological mean—and its predictability increases with in-
creasing predictive information.

Rendering this intuitive notion of predictability quan-
titative requires a precise definition of the degree of
uncertainty associated with the probability density pX(x)
of a random variable X. Such a definition, which is at
the heart of information theory (Brillouin 1956; Shan-
non and Weaver 1949), was introduced by Shannon
(1948), who showed that the entropy

S [ 2k dx p (x) log p (x) (1)X E X X

1 The assumption that the prediction error has no systematic com-
ponent does not imply a ‘‘perfect model’’ assumption. Sections 6 and
8 contain examples of how the proposed framework applies to ‘‘non-
perfect model’’ contexts, namely, to modeling with autoregressive
models and to the performance evaluation of forecasting models.

is a natural measure of the uncertainty associated with
a random variable X. (The quantity SX is sometimes
called the information of the random variable X, mean-
ing that on average the additional information SX is
needed to specify completely a realization of X.) Shan-
non derived the entropy functional from a set of heuristic
requirements that any measure of uncertainty should
fulfill and showed that the entropy is, up to the constant
factor k, the unique measure fulfilling these require-
ments. The value of the constant k determines the units
in which the entropy is measured. For thermodynamic
systems, k is Boltzmann’s constant. For discrete random
variables, the integration in (1) must be replaced by a
sum, and k 5 1/log 2 is chosen so that the entropy SX

becomes the expected number of binary digits, or bits,
needed to specify a particular realization of X. We set
k 5 1/m, where m is the dimension of the state space,
so that SX becomes the mean entropy per state vector
component. Defining the entropy relative to the state
space dimension makes it possible to compare the en-
tropies of random vectors of different dimensions.

Assuming state space vectors to be determined only
up to some fixed accuracy allows one to think of the
state space as discrete. The prior entropy is then theSXn

average number of state vector bits that are undeter-
mined when only the climatological mean is known.
Similarly, the posterior entropy , the conditional en-SEn

tropy of the state given a prediction, is the average
number of state vector bits that remain undetermined
after a prediction has become available. The difference
between these entropies is the predictive information

Rn [ 2 ,S SX En n
(2)

the average information about the state contained in a
prediction. For a discrete system, the predictive infor-
mation is the average number of state vector bits that
a prediction determines.2

The predictive power is defined as

an [ 1 2 .2Rne (3)

Since no predictor should increase the uncertainty in a
state to above the prior uncertainty, implying $SXn

, the predictive information Rn is a positive semi-SEn

definite quantity. Hence, the PP exhibits proper limiting
behavior: it is an index 0 # an # 1 that is zero if the
predictive information vanishes and that monotonically
increases with increasing predictive information, even-
tually approaching unity in the limit of infinite predic-
tive information.

The PP can be interpreted geometrically. If, as is com-
mon practice, the entropy SX is evaluated with k 5 1
in definition (1), then the exponential exp SX is the state

2 Readers familiar with information theory will recognize the close
analogy between the predictive information and the rate of trans-
mission in a noisy channel as considered by Shannon (1948). The
posterior entropy corresponds to Shannon’s equivocation.SEn
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space volume enclosing ‘‘reasonably probable’’ or ‘‘typ-
ical’’ realizations of the random vector X (Shannon and
Weaver 1949, p. 59; Papoulis 1991). We evaluate the
entropy SX with k 5 1/m and call the exponential exp SX

the typical range. The typical range is the mth root of
the volume of typical realizations and measures the mean
size of the set of values typically taken by a random
vector component. Thus, the term exp(2Rn) 5 /exp SEn

in the predictive power (3) is a ratio of typicalexp SXn

ranges: it is the ‘‘typical range of a state vector component
given a prediction’’ over the ‘‘typical range of a clima-
tological state vector component.’’ That is to say, the
term exp(2Rn) is the fraction of the climatological typical
range that lies within a prediction’s ‘‘range of uncer-
tainty.’’ The complement 1 2 exp(2Rn), the PP, is the
typical range fraction that the predictor eliminates from
the climatological typical range. Therefore, the PP in-
dicates the efficacy of the predictor in narrowing the
typical range of a state vector component.

Besides exhibiting proper limiting behavior and hav-
ing an intuitive interpretation, any adequate predict-
ability index should also be independent of the basis in
which state vectors are represented. If, for example, the
state is a compound of several geophysical fields, its
predictability index should not depend on the units in
which these fields are measured. Changing the dimen-
sional scaling of some components of a state vector
amounts to transforming state space vectors x to the
rescaled vectors x9 by multiplication with a diagonal
matrix. Such a transformation should leave a predict-
ability measure unchanged. More generally, we require
the predictability measure to be invariant under linear
coordinate transformations that transform state space
vectors x to x9 5 Ux with arbitrary nonsingular matrices
U. To check if the PP is invariant under such transfor-
mations, note that the probability density functions pX

in the original coordinates and pX9 in the transformed
coordinates are related by pX(x) dx 5 pX9(x9) dx9, from
which it follows that pX(x) 5 |detU| pX9(x9). Using these
relations, one finds that the entropy (1) of the trans-
formed variable X9 compared to that of the original
variable X is changed only by the additive constant
klog|detU|, which involves the determinant detU of the
transformation matrix U (Shannon and Weaver 1949, p.
59). In the predictive information—the difference (2)
between the prior and the posterior entropies—the con-
stant terms klog|detU| cancel. Thus, the PP is indeed
invariant under arbitrary linear transformations of state
space coordinates.

The PP hence has desirable properties and is defined
under general circumstances; neither assumptions about
the modeling framework nor assumptions about the di-
mension or distributions of the relevant random vari-
ables were needed for the derivation. For univariate and
possibly for low-dimensional state vectors, the entropy
can be estimated using standard procedures, which in-
volve estimation of the probability density (see, e.g.,
Silverman 1986; Scott 1992) and of the entropy as a

functional thereof (see, e.g., Prakasa Rao 1983; Dmi-
triev and Tarasenko 1973; Ahmad and Lin 1976; Joe
1989; Hall and Morton 1993). Thus, it may be possible
to obtain a predictability measure for, say, local precip-
itation, a field for which neither the climatological dis-
tribution nor the prediction error distribution is Gaussian
and for which a predictability index based on rms errors
may be inappropriate.

Whereas the PP in its most general form is applicable
to low-dimensional predictions, for high-dimensional
states estimation of the entropy from (1) may not be
feasible when the available dataset is small. Our em-
phasis, however, is on intraseasonal to interannual cli-
mate predictability, as opposed to the predictability of
shorter-term weather processes. That the former kind of
variability follows an approximately Gaussian distri-
bution (see, e.g., Toth 1991) considerably simplifies the
discussion.

b. Simplifications for Gaussian random variables

For an m-dimensional Gaussian random vector X, the
probability density takes the form

2m /2 T(2p) 1
21p (x) 5 exp 2 x 2 ^X& S x 2 ^X& ,1 2 1 2X 1/2 [ ](detS) 2

where ^X& is the mean of X, the superscript ( · )T indicates
the transpose of ( · ), and S21 is the inverse of the non-
singular covariance matrix S. The entropy integral (1)
of the Gaussian density pX is readily carried out and
yields the entropy

k
S 5 (m 1 m log 2p 1 logdet S) (4)X 2

as a function of the covariance matrix determinant. De-
noting the covariance matrix of the state, the climato-
logical covariance matrix, by

Sn 5 Cov(Xn)

and the covariance matrix of the prediction error by

Cn 5 Cov(En),

one finds from (2) the predictive information

k detCnR 5 2 log .n 1 22 detSn

Using the product theorem for determinants and sub-
stituting k 5 1/m leads to the PP

an 5 1 2 (detGn)1/(2m), (5)

where

Gn [ Cn
21Sn (6)

is called the predictive information matrix. The predic-
tive information matrix is well-defined, provided that
the climatological covariance matrix Sn is positive def-
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inite so that its inverse exists and is likewise symmetric
and positive definite. Positive definiteness of the cli-
matological covariance matrix is assumed in the fol-
lowing theoretical developments. The complications
arising in practice from singular covariance matrix es-
timates will be dealt with in section 4c.

The interpretation of the PP as a ratio of typical ranges
can now be made more concrete. From the entropy (4)
of an m-dimensional Gaussian random vector X with
covariance matrix S follows, again taking k 5 1/m, the
typical range,

exp SX 5 2pe (detS)1/(2m) .Ï (7)

For a univariate random variable with m 5 1, the co-
variance matrix S is a scalar variance, and the square
root of this variance is the standard deviation s. There-
fore, the typical range of a univariate Gaussian random
variable, exp SX 5 2pes ø 4.13s, is proportional toÏ
the standard deviation. For an m-dimensional Gaussian
random vector X, the ellipsoid Ep(X) that is centered
on the mean of X and encloses some fraction 0 , p ,
1 of the cumulative probability distribution has a volume
proportional to (detS)1/2 (Anderson 1984, 263). Since
the volume of an ellipsoid is proportional to the product
of the lengths of its semiaxes, the factor (detS)1/(2m) in
the typical range (7) is proportional to the geometric
mean of the semiaxis lengths of the ellipsoid Ep(X).
Hence, the term (detGn)1/(2m) 5 (detCn)1/(2m)(detSn)21/(2m)

in the PP is the ratio of the geometric mean of the
semiaxis lengths of the prediction error ellipsoid Ep(En)
over the geometric mean of the semiaxis lengths of the
climatological ellipsoid Ep(Xn). This interpretation of
the PP as a ratio of geometric means of semiaxis lengths
specializes the above general interpretation of the PP to
Gaussian random variables.

For univariate state vectors, the covariance matrices
in (6) are scalar variances; the predictive information
matrix is the ratio of these variances; and the square
root of these variances, the standard deviations, are the
rms errors. Therefore, the predictive power (5) reduces
to one minus the ratio of the rms error of a prediction
over the rms error of the climatological mean prediction.
Similar predictability measures have been employed by
several authors, for example, Hayashi (1986), Murphy
(1988), and Stern and Miyakoda (1995). Thus, the PP
can be understood as a generalization of the univariate
error-ratio predictability measures to multivariate states
with arbitrary probability distributions.

When the distribution of states is multivariate Gauss-
ian, one might think that arguments based on a com-
parison of prediction errors also lead to an adequate
predictability measure. The mean-squared prediction er-
ror corresponds to the sum of the diagonal elements, or
the trace trCn, of the prediction error covariance matrix
Cn. Analogously, the trace trSn of the climatological
covariance matrix Sn gives the mean-squared error of
the climatological mean prediction. Taking one minus

the ratio of the rms errors as a predictability index, one
obtains

1/2trCn1 2 . (8)1 2trSn

Traces, however, are only invariant under orthogonal
transformations, a subclass of the general linear trans-
formations considered above. A scaling transformation,
for example, generally changes the predictability index
(8). The expression (5) for the PP, on the other hand,
involves a ratio of determinants that remains invariant
under arbitrary linear coordinate transformations, in-
cluding scaling transformations. The invariance under
linear coordinate transformations is a principal advan-
tage of information theory arguments over those based
on considerations of prediction errors.

4. Predictable component analysis

Adapting a procedure from discriminant analysis, we
will now show that, for Gaussian random variables,
knowledge of the predictive information matrix Gn al-
lows us to derive a decomposition of the state space
into subspaces that are ordered according to decreasing
PP.

a. State space decomposition

The state vector Xn consists of m components ,1X n

. . . , , which are univariate random variables. If themX n

state vector is a grid representation of a geophysical
field, for example, the component is the random var-kX n

iable associated with the geophysical field at grid point
k. These univariate random variables are generally cor-
related and are not ordered by PP. From the m com-
ponents , we want to construct m linear combinationskXn

5 ( )TXn such that the first component has thek k 1Y u Yn n n

largest PP attainable by any linear combination of state
vector components, and subsequent components ,2Yn

. . . , are mutually uncorrelated and ordered accord-mYn

ing to decreasing PP.
The transformed state vector Yn with components
is related to the original state vector Xn with com-kYn

ponents by Yn 5 Xn, where the weight vectorsTkX Un n

form the columns of the matrix Un. We restrict our-kun

selves to nonsingular transformations Un ∈ form3mR ,
which the original state vectors can be reconstructed
from the transformed ones via Xn 5 Vn Yn with

Un 5 Vn 5 I.T TV Un n (9)

Written componentwise, the inverse transformation Xn

5 VnYn reads Xn 5 , where is the kth columnm k k kS Y v vk51 n n n

of the matrix Vn. The random variables can thus bekYn

viewed as the components of the state vector Xn when
Xn is expanded in the state space basis , . . . , . The1 mv vn n

basis vectors and the weight vectors, or dual basiskvn

vectors, are related by the completeness and biorth-kun
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ogonality conditions (9). For orthogonal transforma-
tions, basis vectors and their duals , and hence thek kv un n

matrices Vn and Un, are identical. However, as the PP is
invariant under arbitrary linear coordinate transforma-
tions, the transformation Un need not be orthogonal, and
(9) holds with matrices Vn and Un that are generally not
identical.

In order to find the linear combination of state vector
components that has the largest PP, we must determine
the predictive power of an arbitrary linear combi-kan

nation 5 ( )TXn and then maximize this PP withk kY un n

respect to the weight vector . The predictive infor-kun

mation matrix of the univariate component is a ratiokYn

of scalar variances. These scalar variances are the di-
agonal elements of the covariance matrices

5 SnUn and 5 CnUn
T TS9 U C9 Un n n n (10)

of the transformed state vector Yn 5 Xn and the trans-TUn

formed prediction error En. The predictive infor-TUn

mation matrix (6) of the kth component thus reduces to
the ratio of the kth diagonal elements,

k T k(u ) C un n nkg 5 . (11)n k T k(u ) S un n n

The scalar is called the Rayleigh quotient of thekgn

weight vector (see, e.g., Golub and van Loan 1993,kun

chapter 8). Substituting the Rayleigh quotient for the
predictive information matrix in (5) gives the predictive
power of the kth component

5 1 2 ( )1/2.k ka gn n (12)

Maximizing the predictive power is thus equivalentkan

to minimizing the Rayleigh quotient .kgn

The Rayleigh quotient is minimized by taking itskgn

gradient with respect to the weight vector and equat-kun

ing to zero. This procedure leads to the generalized
eigenvalue problem

( )T Cn 5 ( )T Sn,k k ku g un n n

which, still assuming that the climatological covariance
matrix Sn is nonsingular, can be recast into the con-
ventional eigenvalue problem

( )T Cn 5 ( )T.k 21 k ku S g un n n n

This eigenvalue problem determines the weight vector
as a left eigenvector of the predictive informationkun

matrix Gn 5 Cn . It follows that the minimum value21Sn

is the smallest eigenvalue of the predictive infor-1gn

mation matrix Gn. For a nonsymmetric matrix such as
Gn, the completeness and biorthogonality conditions (9)
relate left and right eigenvectors. Therefore, the basis
vector whose component has the smallest Rayleigh1 1v Yn n

quotient , and hence the largest PP, is the right ei-kgn

genvector belonging to the smallest eigenvalue ; that1gn

is, the basis vector with largest PP satisfies Gn 51 1v vn n

. We call the basis vector the first predictable1 1 1g v vn n n

pattern.
We will now argue that an analysis of the remaining

eigenvectors of the predictive information matrix leads
to a decomposition of the state space into uncorrelated
subspaces that are ordered according to decreasing PP.
In making this point, we need some properties of the
eigendecomposition of the predictive information ma-
trix.

The predictive information matrix Gn is a product of
the two symmetric matrices Cn and but is not nec-21Sn

essarily symmetric itself. Therefore, the left and right
eigenvectors of the predictive information matrix Gn

generally differ and do not form sets of mutually or-
thogonal vectors, as they would if Gn were symmetric.
However, a generalized orthogonality condition for the
eigenvectors follows from a linear algebra theorem on
the simultaneous diagonalization of two symmetric ma-
trices (see, e.g., Fukunaga 1990, chapter 2): if the col-
umns of the matrices Un and Vn consist, respectively, of
the left and right eigenvectors of the predictive infor-
mation matrix, then the transformed covariance matrices
(10) are both diagonal. The left eigenvectors can bekun

normalized such that the transformed climatological co-
variance matrix, the covariance matrix of the compo-
nents , becomes the identity matrix,kYn

5 SnUn 5 I.TS9 Un n (13)

This normalization ensures that the left eigenvectors
are orthonormal with respect to the climatologicalkun

covariance matrix Sn. Equivalently, this normalization
means that the components are mutually uncorrelatedkYn

and have unit variance. Moreover, one finds from the
Rayleigh quotient (11) that, in the transformed coor-
dinates, the prediction error covariance matrix is iden-
tical to the diagonalized predictive information matrix,

5 CnUn 5 Diag( );T kC9 U gn n n (14)

here, Diag( ) denotes the diagonal matrix with the ei-kgn

genvalues of the predictive information matrix Gn askgn

diagonal elements.
An orthogonality condition can be derived for the

right eigenvectors as well. Combining the biortho-kvn

gonality condition (9) with the generalized orthogonal-
ity condition (13) for the left eigenvectors yields thekun

relation

SnUn 5 Vn (15)

between left and right eigenvectors of the predictive
information matrix. Solving for Un and substituting into
(13) leads to

Vn 5 I.T 21V Sn n (16)

Therefore, the right eigenvectors are orthonormalkvn

with respect to the inverse climatological covariance
matrix .21Sn

As detailed in the appendix, the eigenvector matrices
Un and Vn can be obtained from a sequence of real trans-
formations and are thus real themselves. This means
that, despite the fact that the predictive information ma-
trix is not necessarily symmetric, its eigenvalues and
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eigenvectors are real. Moreover, as the predictive in-
formation matrix is a product of positive semidefinite
matrices, the eigenvalues are greater than or equalkgn

to zero. Since no predictor of a linear combination of
state vector components should have a prediction error
variance that exceeds that of the climatological mean
prediction, the eigenvalues should also be less thankgn

or equal to one; thus, 0 # # 1.kgn

For the remainder of this paper, we adopt the con-
vention that the m eigenvalues of the predictive in-kgn

formation matrix Gn are ordered from smallest to largest,
so that the corresponding PPs 5 1 2 ( )1/2 arek ka gn n

ordered from largest to smallest,

1 $ $ · · · $ $ 0.1 ma an n

This ordering implies that the vector is the basis1vn

vector whose component is most predictable with1Yn

predictive power . The next eigenvector is the basis1 2a vn n

vector whose component has the next largest pre-2Yn

dictive power , subject to the constraint that the com-2an

ponents and be uncorrelated. Iterating this argu-1 2Y Yn n

ment, we arrive at a decomposition of the state space
into mutually uncorrelated subspaces that are ordered
according to decreasing PP. We call the components

, . . . , the predictable components and the basis1 mY Yn n

vectors , . . . , the predictable patterns. The ex-1 mv vn n

pansion of state vectors in terms of predictable patterns
is called predictable component analysis.

Expressing the predictive information matrix in the
predictable pattern basis makes manifest properties of
both the PP and the predictable component analysis.
Since the determinant of a matrix is the product of its
eigenvalues, the determinant of the predictive infor-
mation matrix can be written as det Gn 5 ,m kP gk51 n

whence we infer, from (5), the overall PP

1/(2m)m

ka 5 1 2 g . (17)Pn n1 2k51

Written in this form, it is evident that the overall PP is
unity if one or more eigenvalues of the predictive in-
formation matrix vanish, that is, if the prediction error
variance vanishes for at least one state vector compo-
nent. At the other extreme, the PP is zero if all eigen-
values of the predictive information matrix are unity.
The PP is nonzero if at least one eigenvalue of the
predictive information matrix is smaller than unity, that
is, if there is at least one predictable component with
nonzero PP. Conversely, if the overall PP is nonzero,
the predictable component analysis discriminates the
state vector components with large, nonzero PP from
those with small, possibly vanishing PP.

More generally, if the overall PP is nonzero, the pre-
dictable component analysis discriminates a more pre-
dictable ‘‘signal’’ from an uncorrelated background of
less predictable ‘‘noise.’’ The overall PP in the subspace
spanned by the first r # m predictable patterns is 1 2
( )1/(2r) , which is greater than or equal to the over-r kP gk51 n

all PP in any subspace of dimension r9 . r. This di-
mension dependence of the PP particularly implies that
the PP 5 1 2 ( )1/2 in the subspace of the first1 1a gn n

predictable pattern is always greater than or equal to the
overall PP in any other subspace, regardless of its di-
mension. We also conclude that the first r , m pre-
dictable patterns span the r-dimensional state space por-
tion with the largest PP, the signal, which is uncorrelated
with the (m 2 r)-dimensional complement, the noise.

b. Relation to principal component analysis

The transformation Yn 5 Xn simultaneously di-TUn

agonalizes the climatological covariance matrix Sn, the
prediction error covariance matrix Cn, and the predictive
information matrix Gn. That is to say, when the states
and the prediction error are expressed relative to the
predictable pattern basis, their components at any fixed
instant n are uncorrelated; nevertheless, predictable
components at different instants n may be correlated. If
we again think of the state vector as a representation of
a geophysical field on a spatial grid, the predictable
component analysis yields components that are uncor-
related spatially but that may be correlated temporally.

This feature of the predictable component analysis is
reminiscent of the principal component analysis, which
is the expansion of state vectors in terms of empirical
orthogonal functions (EOFs). The principal component
analysis of any of the covariance matrices also yields
components that are uncorrelated at fixed n. Consider,
for example, the principal component analysis of the
climatological covariance matrix Sn. If the EOFs, the
mutually orthogonal eigenvectors of Sn, form the col-
umns of the matrix Wn, then the matrix Ln 5 SnWn

TWn

is diagonal with eigenvalues of Sn as diagonal elements.
Rescaling state vectors to unit variance by dividing the
principal components Xn by the square root of theTWn

eigenvalues transforms the climatological covariance
matrix into the identity matrix,

Sn Wn 5 I.T21/2 21/2L W Ln n n (18)

This transformation is usually called a whitening trans-
formation (see, e.g., Fukunaga 1990, chapter 2). For the
variables thus transformed, the predictive information
matrix (6) reduces to the transformed covariance matrix
of the prediction error,

Cn Wn 5 Kn,T21/2 21/2L W Ln n n (19)

which is generally not diagonal but can be diagonalized
by another principal component analysis (cf. appendix).
This further orthogonal transformation leaves the trans-
formed climatological covariance matrix, the identity
matrix, unchanged. Thus, the predictable component
analysis is equivalent to a principal component analysis
of Kn, the prediction error covariance matrix for whit-
ened state vectors.

Principal component analysis and predictable com-
ponent analysis pursue different goals and optimize dif-
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ferent criteria (cf. Fukunaga 1990, chapter 10.1). Ex-
panding state vectors in terms of EOFs and truncating
the expansion at some r , m gives the r-dimensional
subspace that is uncorrelated with the neglected (m 2
r)-dimensional subspace and has minimum rms trun-
cation error (e.g., Jolliffe 1986, chapter 3.2). The prin-
cipal component analysis thus yields an optimal rep-
resentation of states in a reduced basis. As the rms
truncation error is invariant solely under orthogonal
transformations but is not invariant under, for example,
scaling transformations, the EOFs are invariant under
orthogonal transformations only; a dimensional rescal-
ing of variables generally changes the outcome of the
principal component analysis.

By way of contrast, expanding state vectors in terms
of predictable patterns and truncating at some r , m
gives the r-dimensional subspace that is uncorrelated
with the neglected (m 2 r)-dimensional subspace and
has maximum PP. The predictable component analysis
thus yields an optimal discrimination between more pre-
dictable components and less predictable components.
As the predictive power is invariant under arbitrary lin-
ear coordinate transformations, so the predictable com-
ponent analysis is invariant under arbitrary linear trans-
formations of state vectors; in particular, the predictable
component analysis does not depend on the dimensional
scaling of variables.

c. Rank-deficient covariance matrices

The expressions for the PP of Gaussian predictions
and the predictable component analysis were derived
under the assumption that the climatological covariance
matrix Sn be nonsingular. Yet when the climatological
covariance matrix is estimated from data, restrictions in
sample size may lead to a sample covariance matrix that
is singular. For a sample of size N, the sample covariance
matrix is singular if N 2 1, the number of degrees of
freedom in the covariance matrix estimate, is smaller
than the state space dimension m. The sample covari-
ance matrix has at most rank N 2 1 or m, whichever
is smaller. In typical studies of climatic predictability,
the number N of independent data points is much smaller
than the dimension m of the full state space of, say, a
general circulation model; hence, sample covariance
matrices usually do not have full rank.

The correspondence between predictable component
analysis and the principal component analysis of the
prediction error for whitened state vectors suggests a
heuristic for dealing with rank deficiency of sample co-
variance matrices. Instead of applying the whitening
transformation to the full m-dimensional state vectors,
one retains and whitens only those principal components
of the climatological covariance matrix that correspond
to eigenvalues significantly different from zero. The pre-
dictable component analysis is then computed in this
truncated state space.

Complications similar to those with the climatological

covariance matrix Sn may arise with the prediction error
covariance matrix Cn. If the number of degrees of free-
dom n available for the estimation of Cn is smaller than
the state space dimension m, the estimated prediction
error covariance matrix is singular. A singular error co-
variance matrix leads to vanishing eigenvalues of the
predictive information matrix Gn. Vanishing eigenvalues
of the predictive information matrix correspond to states
that have zero prediction error variance for at least one
state vector component, but if n , m, at least m 2 n
of the vanishing eigenvalues may be spurious: they cor-
respond to state space directions in which the prediction
error variance is zero because of sparse sampling but
could become nonzero if the sample were larger. As
above, a way to circumvent these difficulties is to per-
form a principal component analysis of the climatolog-
ical covariance matrix, retaining at most n components
for further analysis.

If the state vectors consist of variables with different
dimensions, the principal component analysis depends
on the dimensional scaling of the variables. For state
vectors that are, for example, compounds of different
geophysical fields, it is therefore advisable to compute
the principal components of each field separately and
assemble the state vectors for the predictable component
analysis from selected principal components of each
field. The principal components should be selected in
such a way that the resulting state space dimension is
small enough to ensure adequate sampling and nonsin-
gular covariance matrix estimates. Section 7a contains
an example that illustrates how principal components
may be selected for a predictable component analysis.

Estimating predictable components from sparse data
is an ill-posed problem, a problem in which the number
of parameters to be estimated exceeds the sample size.
Methods for solving ill-posed problems are known as
regularization techniques (see, e.g., Tikhonov and Ar-
senin 1977; Engl et al. 1996; Hansen 1997; Neumaier
1998). We refer to the above approach as regularization
by truncated principal component analysis. The com-
putational algorithm in the appendix shows that regu-
larization by truncated principal component analysis
amounts to replacing the ill-defined inverse of the es-
timated climatological covariance matrix by a Moore–
Penrose pseudoinverse (see, e.g., Golub and van Loan
1993, chapter 5). Since the principal component analysis
and the pseudoinverse can be computed via a singular
value decomposition of a data matrix (see, e.g., Jolliffe
1986, chapter 3.5), regularization by truncated principal
component analysis is equivalent to regularization by
truncated singular value decomposition, a method ex-
tensively discussed in the regularization literature (e.g.,
in Hansen 1997, chapter 3). More sophisticated regu-
larization techniques (e.g., McLachlan 1992, chapter 5;
Friedman 1989; Cheng et al. 1992; Krzanowski et al.
1995) may yield better estimates of the predictive in-
formation matrix; however, these techniques are less
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transparent than regularization by truncated principal
component analysis.

d. Related work in the statistics and climatic
predictability literature

Predictable component analysis is a variant of a meth-
od known in multivariate statistics as discriminant anal-
ysis. [For introductory surveys, see Ripley (1996, chap-
ter 3) and Fukunaga (1990, chapter 10).] Discriminant
analysis seeks those linear combinations of state vari-
ables that optimize a criterion called the discriminant
function. Discriminant functions are usually ratios of
determinants or of traces of covariance matrices and thus
resemble the PP.

In discriminant analysis, one considers only the
weight vectors and the associated components ,k ku Yn n

which are commonly referred to as canonical variates.
Our additional interest in the predictable patterns ledkvn

us to the above generalizations of standard results from
discriminant analysis. Instead of focusing solely on the
left eigenvectors of the predictive information matrixkun

(or on the right eigenvectors of its transpose), we have
considered both the right and the left eigenvectors as
well as their interdependence. In this respect, the above
derivations extend those in the literature on discriminant
analysis.

In climate research, a number of authors have used
some of the above methods, particularly in the detection
of climate change [e.g., Bell (1982, 1986); Hasselmann
(1993); see Hegerl and North (1997) for a review]. Has-
selmann (1993), for example, takes a climate change
signal as given and determines the linear combination1vn

5 ( )T Xn of climatic variables that best discrimi-1 1Y un n

nates between the climate change signal and a back-
ground noise of natural variability. He obtains from the
signal the optimal fingerprint via the relation1 1 1v u un n n

5 , which is a special case of the relation (15)21 1S vn n

between predictable patterns and weight vectors .k kv un n

Another example of a method that is used in climate
research and resembles discriminant analysis is the state
space decomposition discussed by Thacker (1996).
Thacker’s state space decomposition formally parallels
the predictable component analysis but derives from a
different motivation, namely, seeking dominant modes
of variability in datasets in which the data are affected
by uncertainties.

The predictable component analysis unifies these ap-
proaches. Grounding the analysis in the literature on
multivariate statistics should make a host of further
methods accessible to climate research.

5. Ensemble integrations

Corresponding to the distinction between predict-
ability studies of the first kind and predictability studies
of the second kind, ensemble studies are divided into
two kinds. Since analyzing these two kinds of studies

requires differing techniques, we will consider the two
cases separately.

a. Predictability studies of the first kind

Studies of the first kind address the evolution of un-
certainties in the initial condition for a prediction. In
studies using ensemble integrations of a numerical mod-
el, M initial model states , . . . , are chosen such1 Mx x0 0

as to sample a probability distribution that represents
uncertainties in the initial condition. Each initial state

is then integrated forward in time, evolving into theix0

state at instant n. Just as the initial states , . . . ,i 1x xn 0

form a sample of a distribution that represents un-Mx0

certainties in the initial condition, the states , . . . ,1xn

form a sample of a distribution that represents un-Mxn

certainties in the prediction for lead time n.
The predictive information matrix is the product of

the prediction error covariance matrix and the inverse
of the climatological covariance matrix, and these co-
variance matrices are estimated as sample covariance
matrices from the ensemble of model integrations. Since
the climatological statistics are often almost stationary
over typical forecast lead times, the climatological co-
variance matrix S 5 Sn is usually assumed to be in-
dependent of the lead time n. The climatological co-
variance matrix depends only, for example, on the
month or the season for which a forecast is made. If,
in addition to the ensemble integration, a longer control
integration of the model is available, the climatological
covariance matrix can be estimated from this control
integration as the sample covariance matrix

N1
TŜ 5 (x 2 x)(x 2 x) . (20)O n nN 2 1 n51

The sample mean
N1

x 5 x (21)O nN n51

is an estimate of the climatological mean, and the index
n runs over those N instants of the control integration
that have the same climatological statistics as the instant
for which the forecast is made. The sample covariance
matrix is an estimate of the unknown climatologicalŜ
covariance matrix .S

The mean of the M-member ensemble
M1

ix̂ [ x (22)On nM i51

is a prediction of the model state xn at lead time n that
evolved from some initial state x0 drawn from the dis-
tribution representing initial uncertainties. The ensem-
ble mean prediction is unbiased because the residuals

5 2 x̂n,i ie xn n

which form a sample of the prediction error distribution,
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have zero mean. The sample covariance matrix of the
residuals

M1
i i TĈ 5 e (e )On n nM 2 1 i51

M1
i i T5 (x 2 x̂ )(x 2 x̂ ) (23)O n n n nM 2 1 i51

is an estimate of the prediction error covariance matrix.
The predictive information matrix is estimated from

the sample covariance matrices as 5 , and the21ˆ ˆ ˆG C Sn n

estimate is substituted for the actual predictive in-Ĝn

formation matrix in all of the above analyses. Thus,Ĝn

one can estimate predictive information matrices for a
sequence of forecast lead times n and obtain the overall
PP at each n from (5). Examining the PP as a function
of lead time n will reveal typical timescales over which
the predictability varies. As illustrated in section 7b,
one can test by Monte Carlo simulation at which lead
times n, if at any, the PP estimate is significantly greater
than zero. At those lead times n at which the PP is
significantly greater than zero, there exist predictable
state vector components, and these can be identified by
a predictable component analysis. The sequence of pre-
dictable patterns with a PP significantly greater than
zero will disclose the system’s predictable features as
functions of forecast lead time n. The first predictable
pattern is that pattern whose component is predictable
with the smallest rms error relative to the rms error of
the climatological mean prediction.

Since the estimate Ĉn of the prediction error covariance
matrix and the estimate of the climatological covarianceŜ
matrix are computed from different datasets, finite sample
effects may cause their difference 2 Ĉn not to be positiveŜ
semidefinite; that is, for some components, the prediction
error variance may exceed the climatological variance. If
the difference 2 Ĉn is not positive semidefinite, theŜ
estimate of the predictive information matrix has ei-Ĝn

genvalues that are greater than one, and such eigen-kĝ n

values may lead to negative PPs. Negative PPs can be
avoided by setting all estimated eigenvalues . 1 tokĝ n

5 1. The predictable patterns and weight vectors thatkĝ n

belong to eigenvalues greater than one are not reliably
estimated; however, since they correspond to state space
portions with small PP, they are of little interest.

b. Predictability studies of the second kind

Studies of the second kind address the predictability
of the response of a system to changes in boundary
conditions. Internal variability of the system renders a
multitude of states consistent with a particular boundary
condition, but the distributions of possible state reali-
zations may differ from one boundary condition to an-
other. Predictability of the second kind rests on the sep-
arability of the distributions of possible realizations: the
more separable the distributions are according to dif-
ferent boundary conditions and the more the distribu-

tions are localized in state space, the more a prediction,
based on knowledge of a particular boundary condition,
reduces the uncertainty of which state may be realized.

In ensemble studies, each member i 5 1, . . . , M of
the ensemble is a model state that is consistent with a
given boundary condition. The scatter of the M ensem-
ble members around their mean reflects the internal var-
iability. The climatic variability, reflected by the scatter
of states around the climatological mean, is composed
of the internal variability plus the variability of states
induced by variability in the boundary conditions. In
ensemble studies, variability in the boundary conditions
is accounted for by determining the model’s response
to J different boundary conditions j 5 1, . . . , J, which
are chosen so as to sample the climatological distri-
bution of boundary conditions. Thus, the simulated data
consist of model states , where the indices i and j labelijxn

the ensemble member and the boundary condition, re-
spectively, and n designates the time for which pre-
dictability characteristics are being examined. For ex-
ample, in a study that aims to assess the predictability
of the response of the atmosphere to changes in SST, n
may label the season and j a particular configuration of
SST drawn from the climatological distribution of SST
in season n. To perform such a study in practice, time-
varying SST observations of various years may be pre-
scribed as a boundary condition in a GCM. For each
season n, the SST configurations in the years j 5 1,
. . . , J form a sample of the climatological distribution
of SST. Each of the model states is one possibleijxn

atmospheric state consistent with the SST configuration
j in season n.

The analysis of such ensemble integrations uses tech-
niques from the multivariate analysis of variance
(MANOVA). [See, e.g., Johnson and Wichern (1982,
chapter 6) for an introduction to MANOVA; among
others, Harzallah and Sadourny (1995), Stern and Mi-
yakoda (1995), and Zwiers (1996) have used univariate
analysis of variance techniques in predictability studies
of the second kind.] MANOVA tests whether J groups
of multivariate random variables are separable. Simi-
larly, predictability studies of the second kind are con-
cerned with the separability of state distributions ac-
cording to J different conditions on the system’s bound-
ary.

The climatological covariance matrix is estimated as
the sample covariance matrix

J M1
ij ij TŜ 5 (x 2 x )(x 2 x ) , (24)O On n n n nN 2 1 j51 i51

which measures, at time n, the scatter of the N 5 JM
sample vectors around the sample meanijxn

J M1
ijx 5 x . (25)O On nN j51 i51

The sample mean is an estimate of the climatological
mean.
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Given a boundary condition j at time n, the ensemble
mean

M1
j ijx̂ 5 x (26)On nM i51

provides a prediction of the model state. As above, this
prediction is unbiased because the residuals

5 2 ,ij ij je x x̂n n n

which form a sample of the prediction error distribution,
have zero mean. The sample covariance matrix of the
residuals

M1j ij ij TĈ 5 e (e )On n nM 2 1 i51

M1
ij j ij j T5 (x 2 x̂ )(x 2 x̂ )O n n n nM 2 1 i51

is an estimate of the prediction error covariance matrix.
From the estimate of the prediction error covariancejĈn

matrix and the estimate of the climatological co-Ŝn

variance matrix, one could compute the predictive in-
formation matrix and hence the PP and the predictable
component analysis for each individual boundary con-
dition j at time n. However, attention is seldom focused
on predictability characteristics associated with individ-
ual boundary conditions but is often focused on pre-
dictability characteristics averaged over all boundary
conditions that typically occur at time n. For example,
atmospheric predictability characteristics associated
with a particular SST configuration are often of less
interest than average atmospheric predictability char-
acteristics associated with SST configurations that typ-
ically occur in season n. For this reason, the estimated
covariance matrices of the prediction error are often
combined to an average covariance matrix

J1 jˆ ˆC 5 COn nJ j51

J M1
ij j ij j T5 (x 2 x̂ )(x 2 x̂ ) , (27)O O n n n nN 2 J j51 i51

where N 2 J 5 J(M 2 1) is the number of degrees of
freedom in the averaged estimate. Taking the average
covariance matrix Ĉn in place of the individual covari-
ance matrices has the advantage of increasing thejĈn

number of degrees of freedom in the estimate of the
prediction error covariance matrix from M 2 1 to J(M
2 1). Averaging thus regularizes the estimate of the
prediction error covariance matrix (Friedman 1989).

The predictive information matrix is estimated from
the sample covariance matrices as 5 Ĉn . With21ˆ ˆG Sn n

the estimates of predictive information matrices, theĜn

overall PP at a sequence of n can be obtained from (5).
If the index n labels seasons, for example, examining
the PP as a function of n will reveal how the system’s
average predictability varies seasonally. By Monte Carlo

simulation or with Wilks’ lambda statistic (see, e.g.,
Anderson 1984; chapter 8.4), it can be tested at which
times n, if at any, the estimated PP is significantly great-
er than zero. At times n when the PP is significantly
greater than zero, the predictable component analysis
will yield the predictable patterns. The first predictable
pattern is that pattern whose component varies most
strongly, relative to its climatological variability, from
one boundary condition to another.

In studies of the second kind, the climatological co-
variance matrix and the covariance matrix of the pre-
diction error are estimated from a single dataset. There-
fore, one would expect that the predictive information
matrix can be estimated consistently in that all estimated
eigenvalues lie between zero and one. When the es-kĝn

timated covariance matrices and Ĉn are computedŜn

from (24) and (27), respectively, it can be verified that
the eigenvalues of the predictive information matrixkĝn

estimate are greater than zero and are bounded aboveĜn

by (N 2 1)/(N 2 J). In the limit of large sample sizes
N, the upper bound approaches unity from above, but
for finite N, the eigenvalues are not guaranteed to bekĝn

less than or equal to unity. For the sake of consistent
estimation, one may use biased covariance matrix es-
timates in which both the factor 1/(N 2 1) in the cli-
matological sample covariance matrix (24) and the fac-
tor 1/(N 2 J) in the sample covariance matrix (27) of
the prediction error are replaced by 1/N. These replace-
ments ensure that the predictive information matrix es-
timate has eigenvalues between zero and one so thatĜn

the PP always lies between zero and one as well. How-
ever, the resulting PP estimate is biased toward larger
values.

6. AR models as a class of empirical models

The complexity of comprehensive GCMs makes the
direct computation of the probability distributions of
model states and prediction errors impossible. Ensem-
bles of states and predictions are simulated to infer the
model statistics indirectly from samples. If, however,
the process whose predictability is to be assessed can
be modeled by a simpler empirical model, predictability
characteristics can often be derived without the com-
putational expense of ensemble integrations. For linear
stochastic models, for example, statistics of states and
predictions can be computed directly from the model
parameters and the assumptions intrinsic to the model.
Observational climate data or data simulated by a GCM
are required only to estimate the adjustable parameters
in a linear stochastic model. Whereas the GCMs used
in ensemble integration studies are deterministic mod-
els, in which the underdetermination of an initial con-
dition or the underdetermination of the state given
boundary conditions limits the predictability of state
vector realizations, in stochastic models it is the sto-
chastic nature of the model itself that limits the pre-
dictability of model states.



OCTOBER 1999 3145S C H N E I D E R A N D G R I F F I E S

Given a sample of a time series and a set of initial
states, the predictability of future states of the time series
can be investigated with multivariate autoregressive
(AR) models. An autoregressive model of order p
[AR(p) model] is a model of the form

p

x 5 z 1 A x 1 e , n 5 1, . . . , N, (28)On l n2l n
l51

for a stationary time series of m-dimensional state vec-
tors xn. The p matrices Al ∈ (l 5 1, . . . , p) arem3mR
called coefficient matrices, and the vectors en 5 noise(S)
are uncorrelated m-dimensional random vectors with
zero mean and covariance matrix S. The m-dimensional
parameter vector of intercept terms z allows for a non-
zero mean

^Xn& 5 (I 2 A1 2 · · · 2 Ap)21z

of the time series (Lütkepohl 1993, chapter 2). The mean
exists if the AR model is stable. Stability of the AR
model will be assumed in what follows.

A sample of size N and p presample values of the
state vectors xn (n 5 1 2 p, . . . , N) are assumed to be
available. The appropriate model order p, the coefficient
matrices A1, . . . , Ap, the intercept vector z, and the
noise covariance matrix S must be estimated from the
sample of state vectors. Methods for the identification
of a model that is adequate to represent given time series
data are well known to time series analysts. But since
they appear to be largely unknown in the climate re-
search community, we will summarize some model
identification techniques before describing how predic-
tions and the predictive information matrix can be ob-
tained from a fitted AR model.3

a. Model identification

The model identification process comprises three
phases (Tiao and Box 1981): (i) selecting the model
order p; (ii) estimating the coefficient matrices A1, . . . ,
Ap, the intercept vector z, and the noise covariance ma-
trix S; and (iii) diagnostic checking of the fitted model’s
adequacy to represent the given time series.

1) ORDER SELECTION

The number of adjustable parameters in an AR(p)
model increases with the order p of the model. As the
model order increases, one gains the flexibility to model
a larger class of time series so that one can fit a model
more closely to the given data. However, overfitting,
that is, fitting a model too closely to the given time
series realization, results in a fitted model with poor
predictive capabilities. Selecting the model order means

3 For an introduction to modeling multivariate time series with AR
models, see Lütkepohl (1993).

finding an optimum between gaining flexibility by in-
creasing the model order and avoiding the deterioration
of predictions caused by overfitting.

The model order is commonly chosen as the mini-
mizer of an order selection criterion that measures the
goodness of an AR model fit. [For a discussion of order
selection criteria, see Lütkepohl (1993, chapter 4).] As-
ymptotic properties in the limit of large sample sizes
furnish the theoretical foundation of order selection cri-
teria. Since statements valid in the limit of large sample
sizes may be of only limited validity for the sample
sizes available in practice, and since small-sample prop-
erties of order selection criteria are difficult to derive
analytically, Lütkepohl (1985) compared the small-sam-
ple performance of various order selection criteria in a
simulation study. Among all tested criteria in Lütke-
pohl’s study, the Schwarz Bayesian criterion (SBC; see
Schwarz 1978) chose the correct model order most often
and also led, on the average, to the smallest mean-
squared prediction error of the fitted AR models. Neu-
maier and Schneider (1997) proposed a modified
Schwarz criterion (MSC) that, on small samples, esti-
mates the model order yet more reliably than the original
SBC.

In studies of climatic predictability, prior information
about the model order is not usually available, so the
model order must be estimated from the given data.
Based on the above-cited studies, we recommend using
SBC or MSC as criteria to select the AR model order.

2) PARAMETER ESTIMATION

Under weak conditions on the distribution of the noise
vectors en in the AR model, it can be shown that the
least squares (LS) estimators of the coefficient matrices
A1, . . . , Ap, of the intercept vector z, and of the noise
covariance matrix S are consistent and asymptotically
normal (Lütkepohl 1993, chapter 3). The LS estimators
thus have desirable asymptotic properties. Since, be-
yond that, they also perform well on small samples and
can be computed efficiently (Neumaier and Schneider
1997), LS estimation is our recommended method for
estimating parameters in AR models, unless the esti-
mated AR model is unstable or nearly unstable, in which
case the computationally more expensive exact maxi-
mum likelihood method of Ansley and Kohn (1983,
1986) may be preferable.

3) CHECKING MODEL ADEQUACY

After one has obtained the AR model that fits the
given data best, it is necessary to check whether the
model is adequate to represent the data. Adequacy of a
fitted model is necessary for analyses of its predictibility
characteristics or of its dynamical structure to be mean-
ingful. A variety of tests of model adequacy are de-
scribed, for example, in Lütkepohl (1993, chapter 4),
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Brockwell and Davis (1991, chapter 9.4), and Tiao and
Box (1981).

As one approach to testing model adequacy, one can
test whether the fitted model and the data are consistent
with the assumptions intrinsic to AR models. A principal
assumption in AR models is that the noise vectors en

be uncorrelated. Uncorrelatedness of the noise vectors
is, for example, invoked in the derivation of LS esti-
mates and will be implicit in the discussion of predic-
tions with AR models in section 6b. To test if the fitted
model and the data are consistent with this assumption,
the uncorrelatedness of the residuals

p

ˆê 5 x 2 ẑ 2 A x , n 5 1, . . . , N (29)On n l n2l
l51

can be tested. The superscript refers, as above, toˆ( · )
estimated quantities, here to the LS estimates of the AR
model parameters. Uncorrelatedness of the residuals can
be tested by examining their autocorrelation function
(Brockwell and Davis 1991, chapter 9.4) or by per-
forming statistical tests such as the multivariate port-
manteau test of Li and McLeod (1981).

b. Predictions with an estimated model

After an AR(p) model has been identified that is ad-
equate to represent a given time series of state vectors,
future state vectors can be predicted with the estimated
model. Suppose that p initial states x0, x21, . . . , x12p

are given independently of the sample from which the
AR model was estimated and that the state xn, n steps
ahead of x0, is to be predicted. The n-step prediction

p

ˆx̂ 5 ẑ 1 A x̂ , (30)On l n2l
l51

with x̂j 5 xj for j # 0, predicts the state xn optimally
in that it is the linear prediction with minimum rms
prediction error (Lütkepohl 1993, chapters 2.2 and 3.5).

We take into account two contributions to the error
in predictions with estimated AR models. The first con-
tribution to the prediction error arises because AR mod-
els are stochastic models whose predictions are always
subject to uncertainty, even when the model parameters
are known. The second contribution to the prediction
error arises because the AR parameters are estimated,
as opposed to being known, and are thus afflicted with
sampling error. The uncertainty in the estimated param-
eters adds to the uncertainty in the predictions. A third
contribution to the prediction error arises from uncer-
tainty about the correct model order and uncertainty
about the adequacy of an AR model to represent the
given data. This third contribution, which results from
uncertainty about the model structure, will be ignored
in what follows. Draper (1995) discusses how the un-
certainty about a model structure affects predictions.

For the n-step prediction (30), the first two contri-
butions to the prediction error are uncorrelated (Lüt-

kepohl 1993, chapter 3.5.1). Therefore, the covariance
matrix of the n-step prediction error is the sum

Cn 5 1mod splC Cn n (31)

of the prediction error covariance matrix of an ARmodCn

model with known parameters and the covariance ma-
trix of the sampling error in the prediction. Esti-splCn

mates of the error covariance matrices and formod splˆ ˆC Cn n

arbitrary forecast lead times n are given in Lütkepohl
(1993, chapter 3.5).

As the forecast lead time n approaches infinity, the
n-step prediction (30) approaches the estimate of the
mean

5 (I 2 Â1 2 · · · 2 Âp)21 ẑm̂ (32)

of the AR process. The mean of the AR process is the
optimal long-range prediction of the model state, and it
is the optimal prediction when no initial states are avail-
able (cf. Lütkepohl 1993, chapter 2.2).

The climatological covariance matrix of the fitted AR
model—the error covariance matrix of the prediction
consisting of the estimated mean —is the sum S 5m̂

1 M of the covariance matrix of AR modelmod modS S
states and the covariance matrix M of the sampling error
in the estimate of the mean. The prediction errorm̂
covariance matrices approach the covariance matrixmodCn

of the states as n approaches infinity. An estimatemodS
of the covariance matrix of model states can bemodŜ

computed from the estimated AR parameters by the
method in Lütkepohl (1993, chapter 2.1).4 An estimate
M̂ of the covariance matrix of the sampling error in the
mean follows by substituting estimated parametersm̂
for the exact parameters in the asymptotic expression
for the matrix M given in Lütkepohl (1993, chapter 3.4).
Finally, the sum

5 1 M̂modˆ ˆS S (33)

is an estimate of the climatological covariance matrix.
The predictive information matrix of an AR model is

estimated from the prediction error covariance matrix
Ĉn and the climatological covariance matrix as 5ˆ ˆS Gn

Ĉn . The PP and the predictable component analysis21Ŝ
can then be computed, just as in ensemble studies of
the first kind, for a sequence of forecast lead times n.5

As mentioned above, in ensemble studies of the first
kind, finite sample effects may cause the estimated PPs
to be negative. The same remark applies to AR models
because the referenced estimators of the sampling error
covariance matrices are asymptotic estimators that be-

4 To ensure that the estimated covariance matrices are compatible
with each other, the estimate of the state covariance matrixmodŜ
should be computed directly from the fitted AR parameters. The state
covariance matrix should not be estimated as the sample covariance
matrix of the states.

5 Box and Tiao (1977) offer an analysis of AR models that resem-
bles the predictable component analysis but neglects sampling errors
in the prediction.
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FIG. 1. Percentage of total variation accounted for by each of the
first 20 EOFs of North Atlantic dynamic topography.

come exact only in the limit of infinite sample sizes. In
finite samples, the difference 2 Ĉn between the es-Ŝ
timated climatological covariance matrix and the esti-
mated prediction error covariance matrix is not neces-
sarily positive semidefinite. Negative PPs can again be
avoided by setting to unity all those eigenvalues of the
estimated predictive information matrix that are greater
than unity.

7. Example: North Atlantic multidecadal
variability

To assess the predictability of multidecadal variability
in the North Atlantic, Griffies and Bryan (1997a,b) have
performed an ensemble study of the first kind with the
Geophysical Fluid Dynamics Laboratory coupled cli-
mate model (Delworth et al. 1993, 1997). With univar-
iate methods, they have investigated the predictability
of individual principal components of various oceanic
fields. Here we reexamine a part of Griffies and Bryan’s
dataset with the multivariate methods proposed.

In this illustrative application of the PP concept and
the predictable component analysis, we focus on the
annual mean of the dynamic topography. The set of
simulated data to be examined [‘‘Ensemble A’’ of Grif-
fies and Bryan (1997b)] consists of a control integration
with 200 yr of data and an ensemble of M 5 12 inte-
grations with 30 yr of data each. We restrict our inves-
tigation to the North Atlantic sector extending from the
equator to 728N and containing m 5 247 model grid
points. In this region, the interannual variability of the
model’s dynamic topography is dominated by an oscil-
lation with a period of about 40 yr. Griffies and Bryan
have found individual principal components of this os-
cillation to be predictable up to 10–20 yr in advance.
Regarding the oscillation as an interaction among sev-
eral principal components in a multidimensional state
space, we will estimate the overall PP of this oscillation
and determine its predictable patterns.

For this purpose, predictive information matrices Ĝn

5 Ĉn must be estimated for a sequence of forecast21Ŝ
lead times n. Since the state space dimension m 5 247
exceeds the number of degrees of freedom in estimates
of both the climatological covariance matrix and theŜ
prediction error covariance matrices Ĉn, it is necessary
to regularize the estimates. To do so, we perform a
principal component analysis, truncate it, and then ex-
amine the predictability characteristics of the dynamic
topography in the state space of the retained principal
components.

a. Principal component analysis of the dynamic
topography

The EOFs and the variances of the principal com-
ponents would traditionally be estimated as the eigen-
vectors and eigenvalues of the sample covariance matrix
of the control integration. The eigenvalues of the sample

covariance matrix are, however, biased estimates of the
variances (Lawley 1956). The bias of the eigenvalues
is positive for the leading principal components and
negative for the trailing principal components. The pos-
itive bias of the eigenvalues of the leading principal
components, the components retained in a truncated
principal component analysis, implies a positive bias of
the regularized estimate of the climatological covariance
matrix. This selection bias would lead to a PP estimate
that is biased toward larger values.

We avoid the selection bias of the PP estimate by
partitioning the control integration into two parts with
N 5 100 randomly drawn years each and by selecting
principal components from one part of the dataset and
estimating the climatological covariance matrix from the
other (cf. Miller 1984). We denote the sample covari-
ance matrices of the two parts of the control integration
by and and refer to the eigenvectors ŵk (k 5(1) (2)ˆ ˆS S
1, . . . , m) of the matrix as EOFs and to the pro-(1)Ŝ
jections (ŵk)Txn of state vectors xn onto the EOFs as
principal components. If the r EOFs retained in a trun-
cated principal component analysis form the columns
of the matrix Ŵ ∈ then the generally nondiagonalm3rR ,
estimate Ŵ of the covariance matrix of the re-T (2)ˆ ˆW S
tained principal components is not affected by selection
bias.

Selecting a truncation of the principal component
analysis means finding a trade-off between reducing the
sampling variability of the estimated covariance matri-
ces by including fewer EOFs and reducing the trunca-
tion error by including more EOFs. The fewer EOFs
retained, the smaller the sampling error in the estimated
covariance matrices. The eigenvalue associated with an
EOF gives the mean-squared truncation error that omis-
sion of this EOF would entail.

Figure 1 shows the spectrum of the eigenvalues as-
sociated with the first 20 EOFs of the dynamic topog-
raphy. The eigenvalues are normalized such as to in-
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FIG. 2. (a) First EOF and (b) second EOF of North Atlantic dynamic
topography [dynamic cm]. The patterns are scaled by the standard
deviations of their associated principal components.

dicate the percentage of total sample variation accounted
for by each of the EOFs. Figure 1 suggests a truncation
after the fourth EOF, at the eigenvalue spectrum’s point
of greatest curvature. However, the third and fourth
EOFs represent centennial trends in the model’s deeper
ocean (Griffies and Bryan 1997b). Since we are inter-
ested in multidecadal oscillations and not in long-term
model trends, we focus on the first two EOFs.

Figure 2 shows the first and second EOF patterns.
The EOF patterns, normalized to norm unity, are in this
plot multiplied by the standard deviation of their prin-
cipal components, so the amplitude of the patterns in-
dicates the rms variability of the dynamic topography.
EOF1 represents variations in the strength of the North
Atlantic Current’s northeastward drift. The dynamic to-
pography variations have maximum amplitude in the
model’s western boundary region. EOF2 is more elon-
gated meridionally than EOF1, and it extends farther
northward into the sinking region of the model’s sub-
polar North Atlantic. EOF2 represents gyre-shaped var-
iations in the North Atlantic circulation with the stron-
gest current variations directed northeastward and lo-
cated in the central portion of the basin. The principal
components associated with these patterns exhibit ir-
regular oscillations with a dominant period of 40–45
yr. Since the two principal component time series are
roughly in quadrature, the EOFs can be viewed as dif-
ferent phases of an oscillatory mode of dynamic to-
pography variability.

Together, the first two EOFs account for 39% of the
total sample variation in North Atlantic dynamic to-

pography. In the central and western North Atlantic,
where these EOFs have the largest amplitude, the cor-
relation coefficients between the principal component
time series and the local variations in dynamic topog-
raphy exceed 0.8 (Griffies and Bryan 1997b). Hence,
predictability of the two EOFs would imply predict-
ability of a large portion of local variability in these
dynamically active regions.

b. Predictability estimates from the ensemble
integration

To obtain regularized estimates of the predictive in-
formation matrices, we project the data from the en-
semble integration onto the r 5 2 EOFs retained in the
truncated principal component analysis. For each lead
time n 5 1, . . . , 30 yr, we estimate a prediction error
covariance matrix Ĉn ∈ from the sample covariancer3rR
matrix of the residuals (23). The full sample covariance
matrix ∈ of N 5 100 yr of the control in-m3m(2)Ŝ R
tegration is used in the estimate Ŵ ∈T (2)ˆ ˆ ˆS 5 W S

of the climatological covariance matrix in the trun-r3rR
cated EOF basis. With the Cholesky factorization tech-
nique in the appendix, PPs and the predictable com-
ponent analysis are computed from the covariance ma-
trices Ĉn and .Ŝ

This approach to estimating the predictive informa-
tion matrices avoids selection bias. However, the esti-
mation of the climatological covariance matrix draws
upon only 100 yr out of the 200 yr of available data.
But since for the estimation of the prediction error co-
variance matrices Ĉn only 11 degrees of freedom are
available, against 99 degrees of freedom for the esti-
mation of the climatological covariance matrix , theŜ
sampling variability of the predictive information ma-
trices 5 Ĉn is dominated by the sampling vari-21ˆ ˆG Sn

ability of the prediction error covariance matrices Ĉn.
Therefore, ignoring one-half of the control integration
in the estimation of the climatological covariance matrix
has little effect on the accuracy of the predictive infor-
mation matrix estimates.

Figure 3a shows the overall PP of the first two EOFs
as a function of forecast lead time n. At each n we
estimate, by Monte Carlo simulation of 1000 samples,
a 95% confidence interval for the PP estimate. Each of
the 1000 samples consists of M 5 12 random vectors
drawn from a Gaussian distribution with a covariance
matrix equal to the sample covariance matrix Ĉn of the
residuals and N 5 100 random vectors drawn from a
Gaussian distribution with a covariance matrix equal to
the estimated covariance matrix Ŵ of theT (2)ˆ ˆ ˆS 5 W S
principal components. A PP is computed from each sam-
ple. Adding the difference between the 97.5th percentile
and the mean of the simulated PPs to the overall PP
gives the upper bound of the estimated 95% confidence
interval, and subtracting the difference between the
mean of the simulated PPs and the 2.5th percentile gives
the lower bound. Because the thus estimated 95% con-
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FIG. 3. Predictive power for North Atlantic dynamic topography as a function of forecast lead time. (a) Overall PP (solid line) of the first
two EOFs with 95% confidence interval (shaded). PPs above the dash-dotted line are significant at the 5% level. (b) PP of the first predictable
pattern (solid line) with 95% confidence interval (shaded). Individual PPs of the first EOF (dashed line) and of the second EOF (dotted line).

fidence interval is centered on the estimated overall PP,
it does not account for a bias of the PP estimate.

The difference between the mean of the Monte Carlo
simulated PPs and the PP estimate from the GCM en-
semble is a measure of the bias of the PP estimate. The
mean of the Monte Carlo simulated PPs is always great-
er than the PP estimate, indicating a bias of the PP
estimate toward larger values, but the average PP dif-
ference of 0.03 is negligible compared with the sampling
error in the PP estimates.

The bias of the PP estimate is small enough that the
PP can be considered significantly greater than zero
when the 95% confidence interval does not include zero.
To justify this heuristic for establishing significance of
the PP estimate, we test, also by Monte Carlo simula-
tion, the null hypothesis that the residuals and the state
vectors of the control integration are drawn from dis-
tributions with equal covariance matrices. If the null
hypothesis is true that the climatological covariance ma-
trix S and the prediction error covariance matrix Cn are
equal, then there are no predictable components in the
state space of the first two EOFs. The null hypothesis
is rejected at the 5% significance level for PPs greater
than 0.28, the bound marked by the dash-dotted line in
Fig. 3a. The lead times at which the 95% confidence
interval for the PP estimate does not include zero ap-
proximately coincide with the lead times at which the
estimated PP is greater than the 0.28 significance bound.
The overall PP decays rapidly over the first 10 yr of
the forecasting lead time, remains marginally significant
up to about year 17, and becomes insignificant beyond
year 17.

When the overall PP is significantly greater than zero,
there exist predictable linear combinations of state var-
iables, and the predictable component analysis identifies
the most predictable of those. Figure 3b shows the pre-

dictive power of the first predictable pattern as well1ân

as the individual PPs of the two EOFs. The first pre-
dictable pattern is the linear combination of EOF1 and
EOF2 with the largest PP. As discussed in section 4a,
the PP of the first predictable pattern is always greater
than both the overall PP of the two EOFs combined and
the individual PPs of EOF1 and EOF2.

The confidence interval for the estimated PP of the
first predictable pattern is obtained from the same Monte
Carlo simulation as the confidence interval for the es-
timated overall PP. Because of the selection bias intro-
duced by selecting the most predictable linear combi-
nation of state variables, exclusion of zero from the
confidence interval is not sufficient for a PP estimate

to be considered significantly greater than zero. The1ân

fact that, beyond year 17, the 95% confidence interval
for the estimated PP of the first predictable pattern does
not include zero cannot be taken as evidence of a PP
significantly greater than zero.

Questions as to which combination of state variables
contributes most to the predictability of state realizations
are only meaningful when the overall PP is greater than
zero. However, in a statistical test of whether the overall
PP is consistent with zero, it is possible that the null
hypothesis of zero overall PP is accepted because of a
lack of power of the test, not because it is in fact true.
With subset selection techniques that exclude from the
state space components of small PP (cf. McLachlan
1992, chapter 12), it might then be possible to identify
a lower-dimensional subspace in which the test has
greater power and yields a significant overall PP. For
an example of a similar phenomenon in a different mul-
tivariate test, see Johnson and Wichern (1982, chapter
5B). In our two-dimensional example, however, Fig. 3b
shows that, at most lead times, both EOFs contribute to
the overall PP, so analyzing them jointly seems appro-
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FIG. 4. First predictable patterns of dynamic topography [dynamic cm] for lead times n 5 1, 7, 13, and 17 yr. Left column: first predict-
able pattern of ensemble study. Right column: first predictable pattern of AR model fitted to 100 yr of GCM data.

priate. From the above Monte Carlo simulations we
therefore conclude that the overall PP is insignificant
beyond year 17, and we only consider the first pre-
dictable patterns and their PPs up to this lead time.

Figure 3b suggests that during most of the first 13 yr,
EOF1 has a greater PP than EOF2; conversely, between
years 14 and 17, EOF2 has a greater PP than EOF1.
The succession of first predictable patterns at lead1v̂n

times n 5 1, 7, 13, and 17 yr, displayed in the left
column of Fig. 4, also reflects the relative magnitudes
of the individual PPs of the two EOFs. EOF1 dominates
the first predictable pattern at lead times 1 and 7 yr. At
year 13, EOF2 starts to contribute significantly to the
first predictable pattern. At year 17, EOF2 dominates
the first predictable pattern.

Both the normalization and the sign of the predictable
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patterns are matters of convention. According to the
normalization convention (16), the predictable patterns
are orthogonal with respect to the inverse climatological
covariance matrix . Therefore, amplitudes of the pat-21Ŝ
terns in Fig. 4 indicate the rms variability of the dynamic
topography. The sign of the first predictable pattern

at lead time n is chosen so as to minimize the squared1v̂n

Mahalanobis distance ( 2 2 ) to the1 1 T 21 1 1ˆv̂ v̂ ) S (v̂ v̂n n21 n n21

pattern at lead time n 2 1. The first predictable1v̂v21

pattern at n 5 0 is taken to be the normalized model1v̂0

state at the initialization of the ensemble integration.
This sign convention ensures that the first predictable
patterns evolve smoothly with forecast lead time.

In the initial conditions for the ensemble integration,
the Atlantic overturning circulation is anomalously
weak. Figure 4 shows that what is most predictable 1
and 7 yr in advance is the state vector component as-
sociated with a weak-drift anomaly in the North Atlantic
Current. Most predictable 13 yr in advance is the state
vector component associated with a spreading of the
weak-drift anomaly into subpolar regions and with the
beginning formation of a gyre-shaped current anomaly
in the central North Atlantic. Most predictable 17 yr in
advance is the state vector component associated with
a decrease in amplitude of the weak-drift anomaly in
the North Atlantic Current and with an increase in am-
plitude and a northward spreading of the gyre-shaped
anomaly in the central North Atlantic. The first pre-
dictable patterns represent those features of the dynamic
topography whose components are predictable with the
smallest rms error relative to the rms error of the cli-
matological mean prediction.

The examination of the PP, of the significance of the
PP, and of the first predictable patterns confirms and
complements the analyses of Griffies and Bryan
(1997b). The results presented above were found to be
robust: they do not depend on the particular random
partition of the control integration chosen to estimate
the EOFs and the climatological covariance matrix.

c. Empirical predictability estimates from an AR
model

Predictability characteristics can also be derived em-
pirically from AR models fitted to the same set of GCM
data projected onto two EOFs. The AR model identi-
fication is performed with the software package ARFIT

(Schneider and Neumaier 1997).
Among AR(p) models of order p 5 0, . . . , 6, the

order selection criteria SBC and MSC indicate that an
AR(1) model best fits the first 100 yr of the GCM control
integration. To check whether the fitted AR(1) model is
adequate to represent the GCM data, we test the resid-
uals (29) of the fitted model for uncorrelatedness. For
N realizations of a white noise process, approximately
95% of the sample autocorrelations are expected to lie
within the bounds 61.96(N)21/2 (e.g., Brockwell and
Davis 1991, chapter 7.2). For the 99 bivariate residuals

of the fitted AR(1) model, all but 2 of the 40 sample
autocorrelations between lags 1 and 20 lie within the
bounds 61.96(99)21/2. Additionally, the modified port-
manteau statistic of Li and McLeod (1981) does not
reject, at the 5% significance level, the null hypothesis
that the residuals are uncorrelated. Therefore, within the
class of AR models, an AR(1) model fits the first 100
yr of the control integration best; the residuals of the
fitted model provide no grounds for rejecting the hy-
pothesis that the model is consistent with the GCM data.

The AR model identification procedure was repeated
with segments of the GCM data of various lengths.
AR(1) models were consistently found to be the best
fitting, and diagnostic tests of the fitted models provided
no grounds for rejecting the hypothesis of model ade-
quacy. But the fact that an AR(1) model seems to rep-
resent adequately the particular set of oscillatory prin-
cipal component time series considered here is not to
be taken as a justification for the indiscriminate use of
first-order models. The adequacy of a fitted model must
be assessed, and, when linear stochastic models are at
all adequate, then higher-order models will often be
more appropriate than first-order models. [For an ex-
ample of how models of inappropriately low order can
produce misleading results, see Tiao and Box (1981).]
As discussed in section 6, the PP concept and the pre-
dictable component analysis are applicable to AR mod-
els of any order.

A x2-test of the skewness and kurtosis of the residuals
(29) of the fitted AR(1) model does not reject, at the
5% significance level, the hypothesis that the residuals
are a realization of a Gaussian process. The estimators
of the prediction error covariance matrices in section 6b
are valid for Gaussian processes and can thus be ex-
pected to yield reliable estimates of the PP of the AR
model (cf. Lütkepohl 1993, chapters 3.5 and 4.5).

Figure 5 shows the PP of the fitted AR(1) model as
a function of forecast lead time. Since the prediction
error variance of an AR model is a monotonically in-
creasing function of lead time (Lütkepohl 1993, chapter
2.2), the PP decreases monotonically. The overall PP of
the AR(1) model fitted to the first 100 yr of the GCM
control integration reaches zero at a lead time of about
20 yr. Beyond year 20, the error variances of a model
prediction are estimated to be as large as the error var-
iances of the climatological mean prediction.

Included in Fig. 5 is the overall PP of an AR model
fitted to only 30 yr of GCM data. Sampling errors con-
tribute to the uncertainty in predictions, and since the
sampling errors in models decrease with increasing
length of the time series from which the model param-
eters are estimated, the PP of the model fitted to 30 yr
of data is smaller than the PP of the model fitted to 100
yr of data. The PP of the model fitted to 30 yr of data
already vanishes at a lead time of 11 yr. However, if
sampling errors in the estimated parameters are not tak-
en into account and the PP is estimated only from the
generic prediction error matrices and , then themod modˆ ˆC Sn
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FIG. 5. Here, PP of AR models as a function of forecast lead time:
overall PP (solid line) and PP of first predictable pattern (dash-dotted
line) of AR model fitted to 100 yr of GCM data; overall PP of AR
model fitted to 30 yr of GCM data (dashed line).

PPs of the two AR models are almost indistinguishable
and nonzero up to year 40. Therefore, the difference
between the two PP curves in Fig. 5 can be attributed
entirely to larger sampling errors in the parameters of
the model fitted to the shorter time series. Neglecting
sampling errors leads to a gross overestimation of the
predictive capabilities of fitted AR models.

The PP of the first predictable pattern of the AR(1)
model fitted to 100 yr of GCM data is shown in Fig. 5,
and the right column of Fig. 4 displays the first pre-
dictable pattern itself. The sign and normalization con-
ventions of section 7b are applied. The qualitative fea-
tures of the first predictable patterns of the AR model
are the same as those of the first predictable patterns
inferred from the ensemble integration. Since the pre-
dictive information matrix of an AR model does not
depend on the initial condition for a prediction, the sig-
nificance of the agreement between the first predictable
patterns inferred from the ensemble integration and from
the AR model goes beyond indicating that the AR model
fits the GCM data well. At lead time 1 year, the first
predictable pattern of the AR model is dominated by
the anomaly, represented by EOF1, in the strength of
the North Atlantic Current’s northeastward drift. This
pattern suggests that predictions of the AR model are
particularly reliable when initialized during either an
extremely strong or an extremely weak phase of the
oscillation in the strength of this drift. The GCM en-
semble was initialized during an extremely weak phase
of the North Atlantic Current, which explains the agree-
ment between the predictable patterns.

Thus, the estimation of predictability characteristics
from the ensemble integration and from an AR model
fitted to a small fraction of the GCM data leads to similar
results. For the GCM and the AR model, the lead-time
scales over which the overall PP is distinguishable from

zero coincide, and the same features of the dynamic
topography field are associated with large PP. Such an
agreement of results is possible if, as in our example,
the process in question can be modeled as a linear su-
perposition of stochastically forced damped-oscillatory
and relaxatory modes, modes that an AR model is able
to represent.

8. Concluding remarks

We have presented a conceptual framework for the
multivariate analysis of predictability studies. The pre-
dictability measure in this framework, the PP, indicates
by how much a prediction reduces the uncertainty as to
which state of the predicted process will occur. The
uncertainties in the state before and after a specific pre-
diction is made are quantified by the prior entropy and
the posterior entropy. The difference between these two
entropies is the predictive information contained in a
prediction. The PP, an index between zero and one, is
based on an exponential of the predictive information
and measures the efficacy of predictions in narrowing
the range of values typically taken by state vector com-
ponents.

To quantify predictability, the information content of
predictions must be measured relative to the background
information available prior to the issue of a prediction.
Since climatological statistics are accessible in the types
of predictability studies discussed in this paper, we
chose to measure the predictive power of predictions
relative to the climatological mean prediction as a base-
line. The prior entropy thus became the entropy of the
climatological distribution of states, or the entropy of
the distribution of errors in the climatological mean pre-
diction. Other choices of a baseline are, however, pos-
sible. To evaluate the performance of weather fore-
casting models, for example, one might choose the per-
sistence forecast as a baseline. The methods presented
above can then be applied with the prediction error of
the persistence forecast substituted for the prediction
error of the climatological mean prediction.

For Gaussian random variables, the PP is a function
of the determinant of the predictive information matrix,
the product matrix of the prediction error covariance
matrix and the inverse of the climatological covariance
matrix. Estimating the PP thus reduces to estimating the
predictive information matrix from samples of data or
from estimated parameters of empirical models. We
have discussed how the predictive information matrix
is obtained from ensemble integration studies of the first
and the second kind and from AR models fitted to ob-
served or simulated data. The application of the PP con-
cept in an ensemble integration study of the predict-
ability of multidecadal North Atlantic variability illus-
trates how confidence intervals and significance bounds
for the PP estimate can be established and how the PP
is to be interpreted.

When the estimated PP of a process is significantly
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greater than zero, the process has predictable compo-
nents, and these can be discriminated from the unpre-
dictable components by a predictable component anal-
ysis, an eigendecomposition of the predictive infor-
mation matrix. If state vectors are expanded in terms of
predictable patterns—that is, in terms of the right ei-
genvectors of the predictive information matrix—then
their first component is the most predictable, and sub-
sequent components are mutually uncorrelated and or-
dered by PP from largest to smallest. The examination
of North Atlantic variability illustrates the interpretation
of the first predictable pattern. The sequence of pre-
dictable patterns for forecast lead times between 1 and
17 yr shows the most predictable features of a multi-
decadal oscillation in the dynamic topography field. In
this example, the analysis of an AR model adequately
representing the oscillation in the dynamic topography
and the analysis of an ensemble of GCM integrations
yield similar lead-time scales of nonzero PP and similar
predictable patterns.

Although the PP and the predictable component anal-
ysis have been derived under the assumption that the
states and prediction errors follow Gaussian distribu-
tions, it is the ellipsoidal symmetry of the distributions
that is more important than their detailed shape (Fried-
man 1989). Hence, the assumption of Gaussian distri-
butions can, in practice, be relaxed to a symmetry as-
sumption.

The framework that has been presented in this paper
is applicable to a wider range of studies than that ex-
plicitly covered. The above-mentioned performance
evaluation of weather forecasting models is but one ex-
ample of further applications. Grounding our analyses
in the literature on multivariate statistics will, we hope,
facilitate the extension of the framework to other ap-
plications.
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APPENDIX

Computation of the Predictable Component
Analysis

The predictable component analysis simultaneously
diagonalizes the climatological covariance matrix and
the prediction error covariance matrix. This fact can be
exploited in the practical computation of predictable
components and predictable patterns (cf. Fukunaga
1990, chapter 2).

First, we compute the principal component analysis
Sn 5 Wn Ln of the climatological covariance matrixTWn

Sn. The orthogonal matrix Wn, whose columns are the
eigenvectors of Sn, and the diagonal eigenvalue matrix
Ln 5 Diag( ) are then used in a whitening transfor-kln

mation (18), which transforms the climatological co-
variance matrix into the identity matrix and the predic-
tion error covariance matrix into the matrix Kn given in
(19). The matrix Kn is symmetric but not necessarily
diagonal. It can be diagonalized by a further orthogonal
transformation Tn, with columns of Tn formed by eigen-
vectors of Kn, such that, as in (14),

Cn Wn Tn 5 KnTn 5 Diag( ).T T T21/2 21/2 kT L W L T gn n n n n n

(A1)

The identity matrix (18) remains unchanged under this
transformation:

Sn Wn Tn 5 I Tn 5 I.T T T21/2 21/2T L W L Tn n n n n (A2)

Comparing the expressions (A1) and (A2) for the trans-
formed covariance matrices with the corresponding ex-
pressions (14) and (13) in the predictable pattern basis,
we obtain for the weight vector matrix

Un 5 Wn Tn.21/2Ln (A3)

From the biorthogonality condition (9) follows

Vn 5 Wn Tn
1/2Ln (A4)

for the matrix Vn with predictable patterns as columns.
The implementation of this algorithm can be checked
for consistency by verifying that the weight vector ma-
trix Un and the predictable pattern matrix Vn satisfy the
completeness and biorthogonality conditions (9).

If the climatological covariance matrix Sn is singular,
one or more of the eigenvalues in Ln 5 Diag( ) isk kl ln n

zero and 5 Diag[( )21/2] does not exist. Regu-21/2 kL ln n

larization by truncated principal component analysis
proceeds by setting to zero both the eigenvalues notkln

significantly different from zero and the square root
( )21/2 of their inverses. Zeroing these contributions tokln

the inverse climatological covariance matrix 5 Wn
21Sn

amounts to replacing the ill-defined inverseT21L Wn n

by a Moore–Penrose pseudoinverse (see, e.g., Go-21Sn

lub and van Loan 1993, chapter 5). If, after regulari-
zation, only the first r of the m eigenvalues are non-kln

zero, the predictable component analysis is computed
in the truncated r-dimensional state space.

Computing the predictable component analysis by a
principal component analysis of the climatological co-
variance matrix Sn followed by a principal component
analysis of the prediction error covariance matrix Kn has
several advantages: besides the predictable patterns Vn,
it produces the EOFs Wn; and the predictable component
analysis can be regularized by truncating the principal
component analysis of the climatological covariance
matrix. However, when no regularization needs to be
performed, it is numerically more efficient to replace
the eigendecomposition Sn 5 Wn Ln of the clima-TWn



3154 VOLUME 12J O U R N A L O F C L I M A T E

tological covariance matrix by a Cholesky decomposi-
tion Sn 5 Ln and to use the Cholesky factor Ln inTLn

place of Wn and in place of Wn (Press et2T1/2 21/2L L Ln n n

al. 1992, 455).
In predictability studies of the first kind, the clima-

tological covariance matrix Sn usually does not depend
on the forecast lead time n, so that the whitening trans-
formation (18) with the matrix or with theT21/2L Wn n

Cholesky factor need be computed only once. Only21Ln

the eigendecomposition Tn of the transformed prediction
error covariance matrix Kn must be computed for each
forecast lead time n. In predictability studies of the sec-
ond kind, all of the above transformations must be com-
puted for each time n for which a prediction is made.
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