4 research outputs found

    Induction of a Four‐Way Junction Structure in the DNA Palindromic Hexanucleotide 5′‐d(CGTACG)‐3′ by a Mononuclear Platinum Complex

    Get PDF
    Four‐way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA‐damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5′‐d(CGTACG)‐3′ specifically into a 4WJ‐like motif. In the crystal structure of the 1–CGTACG adduct, the distorted‐square‐planar platinum complex binds to the core of the 4WJ‐like motif through π–π stacking and hydrogen bonding, without forming any platinum–nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.Metals in Catalysis, Biomimetics & Inorganic Material

    Photochemical Resolution of a Thermally Inert Cyclometalated Ru(phbpy)(N–N)(Sulfoxide)+ Complex

    No full text
    In this work a photosubstitution strategy is presented that can be used for the isolation of chiral organometallic complexes. A series of five cyclometalated complexes Ru(phbpy)(N−N)(DMSO-κS)](PF6) ([1]PF6-[5]PF6) were synthesized and characterized, where Hphbpy = 6′-phenyl-2,2′-bipyridyl, and N–N = bpy (2,2′-bipyridine), phen (1,10-phenanthroline), dpq (pyrazino[2,3-f][1,10]phenanthroline), dppz (dipyrido[3,2-a:2′,3′-c]phenazine, or dppn (benzo[i]dipyrido[3,2-a,2′,3′-c]phenazine), respectively. Due to the asymmetry of the cyclometalated phbpy– ligand, the corresponding [Ru(phbpy)(N–N)(DMSO-κS)]+complexes are chiral. The exceptional thermal inertness of the Ru–S bond made chiral resolution of these complexes by thermal ligand exchange impossible. However, photosubstitution by visible light irradiation in acetonitrile was possible for three of the five complexes ([1]PF6-[3]PF6). Further thermal coordination of the chiral sulfoxide (R)-methyl p-tolylsulfoxide to the photoproduct [Ru(phbpy)(phen)(NCMe)]PF6, followed by reverse phase HPLC, led to the separation and characterization of the two diastereoisomers of [Ru(phbpy)(phen)(MeSO(C7H7))]PF6, thus providing a new photochemical approach toward the synthesis of chiral cyclometalated ruthenium(II) complexes. Full photochemical, electrochemical, and frontier orbital characterization of the cyclometalated complexes [1]PF6-[5]PF6 was performed to explain why [4]PF6 and [5]PF6 are photochemically inert while [1]PF6-[3]PF6 perform selective photosubstitution.Metals in Catalysis, Biomimetics & Inorganic Material
    corecore