21 research outputs found

    Exchange Protein Directly Activated by Cyclic AMP Isoform 2 Is Not a Direct Target of Sulfonylurea Drugs

    No full text
    It has been reported by Zhang et al. that antidiabetic sulfonylurea drugs promote insulin secretion by directly binding to exchange protein directly activated by cyclic AMP isoform 2 (Epac2) and activating its down-stream effector Rap1. However, a critical link for an unambiguous validation of a direct interaction between Epac2 and sulfonylurea using purified individual components is missing. Our in vitro analyses using purified full-length Epac2 and Rap1 suggest that sulfonylureas are not able to directly bind to Epac2, nor are they capable of triggering Epac2-dependent Rap1 activation

    MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence

    No full text
    Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence

    Development of a subunit vaccine for prevention of Clostridium difficile associated diseases: Biophysical characterization of toxoids A and B

    No full text
    Inactivation of bacterial toxins for use in human vaccines traditionally is achieved by treatment with formaldehyde. In contrast, the bivalent experimental vaccine for the prevention of C. difficile infections (CDI) that is currently being evaluated in clinical trials was produced using a different strategy. C. difficile toxins A and B were inactivated using site-directed mutagenesis and treatment with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/N-hydroxysulfosuccinimide (EDC/NHS). In the present work we investigate the effect of genetic and chemical modifications on the structure of inactivated toxins (toxoids) A and B. The far-UV circular dichroism (CD) spectra of wild type toxins, mutated toxins, and EDC/NHS-inactivated toxoids reveal that the secondary structure of all proteins is very similar. The near-UV CD spectra show that aromatic residues of all proteins are in a unique asymmetric environment, indicative of well-defined tertiary structure. These results along with the fluorescence emission maxima of 335 nm observed for all proteins suggest that the tertiary structure of toxoids A and B is preserved as well. Analytical ultracentrifugation data demonstrate that all proteins are predominantly monomeric with small fractions of higher molecular weight oligomeric species present in toxoids A and B. Differential scanning calorimetry data reveal that genetic mutations induce thermal destabilization of protein structures. Subsequent treatment with EDC/NHS results either in a minimal (1 °C) increase of apparent thermostability (toxoid B) or no change at all (toxoid A). Therefore, our two-step inactivation strategy is an effective approach for the preparation of non-toxic proteins maintaining native-like structure and conformation

    Signal Transmission in Escherichia coli Cyclic AMP Receptor Protein for Survival in Extreme Acidic Conditions

    No full text
    El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.During the life cycle of enteric bacterium Escherichia coli, it encounters a wide spectrum of pH changes. The asymmetric dimer of the cAMP receptor protein, CRP, plays a key role in regulating the expressions of genes and the survival of E. coli. To elucidate the pH effects on the mechanism of signal transmission, we present a combination of results derived from ITC, crystallography, and computation. CRP responds to a pH change by inducing a differential effect on the affinity for the binding events to the two cAMP molecules, ensuing in a reversible conversion between positive and negative cooperativity at high and low pH, respectively. The structures of four crystals at pH ranging from 7.8 to 6.5 show that CRP responds by inducing a differential effect on the structures of the two subunits, particularly in the DNA binding domain. Employing the COREX/BEST algorithm, computational analysis shows the change in the stability of residues at each pH. The change in residue stability alters the connectivity between residues including those in cAMP and DNA binding sites. Consequently, the differential impact on the topology of the connectivity surface among residues in adjacent subunits is the main reason for differential change in affinity; that is, the pH-induced differential change in residue stability is the biothermodynamic basis for the change in allosteric behavior. Furthermore, the structural asymmetry of this homodimer amplifies the differential impact of any perturbations. Hence, these results demonstrate that the combination of these approaches can provide insights into the underlying mechanism of an apparent complex allostery signal and transmission in CRP.National Institutes of HealthRevisión por pare

    Rational stabilization of enzymes by computational redesign of surface charge–charge interactions

    No full text
    Here, we report the application of a computational approach that allows the rational design of enzymes with enhanced thermostability while retaining full enzymatic activity. The approach is based on the optimization of the energy of charge–charge interactions on the protein surface. We experimentally tested the validity of the approach on 2 human enzymes, acylphosphatase (AcPh) and Cdc42 GTPase, that differ in size (98 vs. 198-aa residues, respectively) and tertiary structure. We show that the designed proteins are significantly more stable than the corresponding WT proteins. The increase in stability is not accompanied by significant changes in structure, oligomerization state, or, most importantly, activity of the designed AcPh or Cdc42. This success of the design methodology suggests that it can be universally applied to other enzymes, on its own or in combination with the other strategies based on redesign of the interactions in the protein core

    High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on <i>Staphylococcus aureus</i> Antigen MntC

    No full text
    <div><p>The <i>Staphylococcus aureus</i> manganese transporter protein MntC is under investigation as a component of a prophylactic <i>S</i>.<i>aureus</i> vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce <i>S</i>. <i>aureus</i> burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 – group 1, mAB 305-78-7 – group 2, and mAB 305-101-8 – group 3) were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS). All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7) with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst <i>S</i>. <i>aureus</i> infection by preventing the capture and transport of Mn<sup>2+</sup>, a key element that the pathogen uses to evade host immunity.</p></div

    Three-dimensional structure of <i>S</i>. <i>aureus</i> MntC.

    No full text
    <p>The figure is rendered using Accelrys Discovery Studio Visualizer 2.5 (PDB ID 4K3V). The N-terminal domain of the protein is shown in red, the C-terminal domain is shown in green, and the connecting “backbone” α-helix is shown in yellow. The purple ball represents the Mn<sup>2+</sup> ion in the binding site. Individual structural elements are labeled to illustrate the numbering convention used throughout the article.</p
    corecore