25 research outputs found

    POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    Get PDF
    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the "univariate" approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in "multivariate" approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts.

    POWERLIB: SAS/IML Software for Computing Power in Multivariate Linear Models

    Get PDF
    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the "univariate" approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in "multivariate" approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts

    Analytic, Computational, and Approximate Forms for Ratios of Noncentral and Central Gaussian Quadratic Forms

    Get PDF
    Many useful statistics equal the ratio of a possibly noncentral chi-square to a quadratic form in Gaussian variables with all positive weights. Expressing the density and distribution function as positively weighted sums of corresponding F functions has many advantages. The mixture forms have analytic value when embedded within a more complex problem. The mixture forms also have computational value. The expansions work well with quadratic forms having few components and small degrees of freedom. A more general algorithm from earlier literature can take longer or fail to converge in the same setting. Many approximations have been suggested for the problem. a positively weighted noncentral quadratic form can always have two moments matched to a noncentral chi-square. For a single quadratic form, the noncentral form performs neither uniformly more or less accurately than older approximations. The approach also gives a noncentral F approximation for any ratio of a positively weighted noncentral form to a positively weighted central quadratic form. The method provides better accuracy for noncentral ratios than approximations based on a single chi-square. The accuracy suffices for many practical applications, such as power analysis, even with few degrees of freedom. Naturally the approximation proves much faster and simpler to compute than any exact method. Embedding the approximation in analytic expressions provides simple forms which correctly guarantee only positive values have nonzero probabilities, and also automatically reduce to partially or fully exact results when either quadratic form has only one term

    Confidence regions for repeated measures ANOVA power curves based on estimated covariance

    Get PDF
    Abstract Background Using covariance or mean estimates from previous data introduces randomness into each power value in a power curve. Creating confidence intervals about the power estimates improves study planning by allowing scientists to account for the uncertainty in the power estimates. Driving examples arise in many imaging applications. Methods We use both analytical and Monte Carlo simulation methods. Our analytical derivations apply to power for tests with the univariate approach to repeated measures (UNIREP). Approximate confidence intervals and regions for power based on an estimated covariance matrix and fixed means are described. Extensive simulations are used to examine the properties of the approximations. Results Closed-form expressions are given for approximate power and confidence intervals and regions. Monte Carlo simulations support the accuracy of the approximations for practical ranges of sample size, rank of the design matrix, error degrees of freedom, and the amount of deviation from sphericity. The new methods provide accurate coverage probabilities for all four UNIREP tests, even for small sample sizes. Accuracy is higher for higher power values than for lower power values, making the methods especially useful in practical research conditions. The new techniques allow the plotting of power confidence regions around an estimated power curve, an approach that has been well received by researchers. Free software makes the new methods readily available. Conclusions The new techniques allow a convenient way to account for the uncertainty of using an estimated covariance matrix in choosing a sample size for a repeated measures ANOVA design. Medical imaging and many other types of healthcare research often use repeated measures ANOVA

    Power calculation for overall hypothesis testing with high-dimensional commensurate outcomes: Overall power for HDLSS

    Get PDF
    The complexity of system biology means that any metabolic, genetic, or proteomic pathway typically includes so many components (e.g., molecules) that statistical methods specialized for overall testing of high-dimensional and commensurate outcomes are required. While many overall tests have been proposed, very few have power and sample size methods. We develop accurate power and sample size methods and software to facilitate study planning for high-dimensional pathway analysis. With an account of any complex correlation structure between high-dimensional outcomes, the new methods allow power calculation even when the sample size is less than the number of variables. We derive the exact (finite-sample) and approximate non-null distributions of the ‘univariate’ approach to repeated measures test statistic, as well as power-equivalent scenarios useful to generalize our numerical evaluations. Extensive simulations of group comparisons support the accuracy of the approximations even when the ratio of number of variables to sample size is large. We derive a minimum set of constants and parameters sufficient and practical for power calculation. Using the new methods and specifying the minimum set to determine power for a study of metabolic consequences of vitamin B6 deficiency helps illustrate the practical value of the new results. Free software implementing the power and sample size methods applies to a wide range of designs, including one group pre-intervention and post-intervention comparisons, multiple parallel group comparisons with one-way or factorial designs, and the adjustment and evaluation of covariate effects

    POWERLIB : SAS/IML Software for Computing Power in Multivariate Linear Models

    Get PDF
    The POWERLIB SAS/IML software provides convenient power calculations for a wide range of multivariate linear models with Gaussian errors. The software includes the Box, Geisser-Greenhouse, Huynh-Feldt, and uncorrected tests in the “univariate” approach to repeated measures (UNIREP), the Hotelling Lawley Trace, Pillai-Bartlett Trace, and Wilks Lambda tests in “multivariate” approach (MULTIREP), as well as a limited but useful range of mixed models. The familiar univariate linear model with Gaussian errors is an important special case. For estimated covariance, the software provides confidence limits for the resulting estimated power. All power and confidence limits values can be output to a SAS dataset, which can be used to easily produce plots and tables for manuscripts

    Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final design and early procurement phase, with commissioning at the telescope expected in 2017.Comment: 11 pages, 11 Figures, Summary of a presentation to Astronomical Telescopes and Instrumentation 201

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Construction progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    Get PDF
    We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R 5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R 20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
    corecore