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Abstract

The complexity of system biology means that any metabolic, genetic, or proteomic pathway

typically includes so many components (e.g., molecules) that statistical methods specialized for

overall testing of high-dimensional and commensurate outcomes are required. While many overall

tests have been proposed, very few have power and sample size methods. We develop accurate

power and sample size methods and software to facilitate study planning for high-dimensional

pathway analysis. With an account of any complex correlation structure between high-dimensional

outcomes, the new methods allow power calculation even when the sample size is less than the

number of variables. We derive the exact (finite-sample) and approximate non-null distributions of

the ‘univariate’ approach to repeated measures test statistic, as well as power-equivalent scenarios

useful to generalize our numerical evaluations. Extensive simulations of group comparisons

support the accuracy of the approximations even when the ratio of number of variables to sample

size is large. We derive a minimum set of constants and parameters sufficient and practical for

power calculation. Using the new methods and specifying the minimum set to determine power for

a study of metabolic consequences of vitamin B6 deficiency helps illustrate the practical value of

the new results. Free software implementing the power and sample size methods applies to a wide

range of designs, including one group pre-intervention and post-intervention comparisons,

multiple parallel group comparisons with one-way or factorial designs, and the adjustment and

evaluation of covariate effects.
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1. Introduction

1.1. Motivation

Sample size determination is one of the important aspects of study planning. An

overestimation of sample size misuses research resources, while an underestimation results

in lack of adequate statistical power. High-throughput methods used in metabolomic,

genomic, and proteomic research generate high-dimensional data. When planning such

studies, scientists increasingly emphasize pathway and set-based analysis, as opposed to

simultaneous analysis of each individual metabolite, gene, and protein. Pathway analysis of

functionally or structurally related molecules provides interpretable results that may not be

easily accessible from simultaneous, individual testing. Goeman and Bühlmann [1] indicated

that, in microarray analysis, the shift of the level of analysis from single genes to sets of

related genes allows biologists to make use of previously accumulated biological knowledge

for a more biology driven analysis.

Owing to the complexity of system biology, any metabolic, genetic, and proteomic pathways

typically includes so many components (e.g., molecules) that statistical methods specialized

for overall testing of high-dimensional outcomes are required. Concentrations or relative

abundances of molecules are typically measured from one single high-throughput bioassay,

leading to commensurate measurements sharing the same scale and units. An adequate

account of the correlation between the high-dimensional commensurate outcomes can

increase statistical power and in turn reduce the sample size required for a targeted power.

Traditionally, multivariate methods were developed to account for such within-subject

correlation (of any structure); however, the classical multivariate statistics become

undefined when the number of variables exceeds sample size.

Many statistical methods have been proposed for a single overall test of high-dimensional

differences in a biological pathway or gene set due to, for example, treatment and type of

cell ([1–9], among others). However, most approaches apply to a narrow range of designs.

Even fewer have power and sample size methods.

With high-dimensional outcomes, typical of genetic research, for example, sample size is

often smaller than the number of variables because of cost considerations. Existing power

and sample size methods for overall testing either are based on an assumption that sample

size is greater than number of variables [10, 11] or rely on large sample Gaussian

approximations [7, 8]. Neither approach may be suitable to allow samples with more

variables than subjects. Moreover, the lack of free, user-friendly power and sample size

software impedes study planning. In this paper, accurate power and sample size methods and

software, applicable whether sample size is smaller or larger than the number of variables,

will be developed. The new methods will be useful for planning studies for metabolic,

genetic, and proteomic pathway analysis, with one-way or factorial between-subject design,

adjustment for fixed covariates. Furthermore, the methods apply to any collection of fixed

predictors in a general linear multivariate model, including incomplete designs. The methods

allow computing power for any kind of general linear multivariate model test, including

overall tests of mean vectors, within-subject contrasts, between-subject contrasts, and

between-by-within interaction contrasts.
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1.2. Previous related work

Driven by a collaboration to compare metabolic profiles before and after a vitamin B6

depleted diet, Chi et al. [5] proposed a new test that extends the existing ‘univariate

approach’ to repeated measures (UNIREP) to analyzing high dimension, low sample size

data (i.e., number of variables greater than sample size). On the basis of the framework of

the general linear multivariate model, their test is flexible and can be applied to general

designs, including parallel group comparison and evaluation of continuous covariates.

Through a combination of analytic results and extensive simulations, they provided evidence

that the new test has better control of type I error rate and power, when compared with

methods proposed by Ahmad et al. [12], Srivastava and Du [7], and Srivastava and

Fujikoshi [8]. Their method is implemented in a free, SAS/IML program called LINMOD,

as well as being available in the SAS procedure PROC GLM (using uepsdef = CM option on

the REPEATED statement).

Computer simulations provide a general tool for power analysis when the exact or an

approximate null distribution of the statistic is available and the non-null distribution is

unknown. However, simulations can introduce a substantial computational burden in high-

dimensional settings. We derive the exact non-null distribution and a corresponding

approximate distribution for the UNIREP statistic. The results provide fast and accurate

power calculations. By the method of moments, our F approximation has properly adjusted

degrees of freedom and reduces to the F approximation derived by Chi et al. [5] when the

noncentrality parameter is zero. We describe the exact and approximate non-null

distributions in terms of minimum sufficient sets of parameters, which specify a particular

power computation. The theory assumes fixed predictors (i.e., with values known before

data collection). As discussed by Glueck and Muller [13], different theory and computation

of power analysis is needed when random predictors are present.

1.3. New sample size method and software

A minimum set of constants and parameters sufficient to specify the exact non-null

distributions consists of (1) error degrees of freedom, (2) number of between-subject

contrasts, (3) number of within-subject contrasts, (4) scaled variances of principal

components of the hypothesis variables, and (5) multiple semi-partial correlations between

principal components and the set of predictors tested in the hypothesis (adjusted for

predictors in the model but not included in the test). We derive power-equivalent hypothesis

testing scenarios that share the exact non-null distribution. We simulate only simple

scenarios with canonical design matrices and diagonal covariance matrices. The analytic

results on power equivalence guarantee that the conclusions from the simulations apply to

scenarios with complex design matrices and any covariance structure.

The new power approximation uses only three parameters in lieu of the roughly p2 needed

for exact calculations. Simulation studies support the accuracy of the approximation. An

updated version of SAS/IML software POWERLIB implements the new approximation in

two ways. First, the program provides approximate power based on knowing the population

parameters, including the entire covariance matrix and mean matrix, as is typical of power

calculation software. Second, the program also allows using sample data (even with more
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variables than subjects) from a previous study to estimate the unknown parameters in the

approximation and provide an estimated power for a new study.

We organize the rest of the paper as follows. In Section 2, we review the existing methods

for testing general linear hypotheses and their distributional properties, especially with more

variables than subjects. We then describe new exact and approximate results for the non-null

distribution, highlight a number of power-equivalent hypothesis testing scenarios, and

discuss power calculation when the population parameters are unknown. In Section 3, we

provide a practical example for planning a study of metabolic consequences of vitamin B6

deficiency. In Section 4, we summarize results from extensive simulations for evaluating the

accuracy of the approximations. In Section 5, we discuss implications of the new results and

future research directions. We include all mathematical theorems and proofs in the

Appendix.

2. Approach

2.1. Existing results for testing the general linear hypothesis

With rows of Y (N × p) corresponding to subjects (independent sampling units) and columns

of Y corresponding to repeated measures or commensurate outcomes, the general linear

multivariate model is given by

(1)

Here, X (N × q) is the design matrix, and B (q × p) is the primary parameters matrix. The

Gaussian assumption leads to independently and identically distributed rowi (E)′ ~ p(0,

Σ), equivalently E ~ N,p(0, IN, Σ) for a matrix Gaussian distribution, as defined in [14,

Chapter 8]. Table II summarizes the notation for the parameters and constants of the model

and associated general linear hypothesis H0 :Θ = Θ0, with Θ = CBU the matrix of secondary

parameters, C (a × q) the between-subject contrast matrix, and U (p × b) the within-subject

contrast matrix.

A set of regularity conditions define estimable and testable Θ: (1) rank(C) = a ≤ q, (2)

rank(U) = b ≤ p, and (3) C = C(X′ X)−(X′ X). Rows of the between-subject contrast matrix C
define a contrasts in the predictor space, while columns of the within-subject contrast matrix

U define b contrasts in the outcome space. In turn, the first two regularity conditions lead to

defining an estimable and testable subspace. The third regularity condition is needed for the

linear estimability of Θ ([15, p. 137] and [14, Section 11.4]). For an estimable Θ, both least

squares and maximum likelihood estimation methods give Θ̂ = C B̃ U with B̃ = (X′ X)−X′ Y
and (X′ X)− the generalized inverse of X′ X. The general linear hypothesis H0 : Θ = Θ0 for

testable Θ covers many designs for one, two, or many samples, including variations or

analogs of repeated measures and multivariate analysis of variance, multivariate regression,

discriminant analysis with two or more groups, and canonical correlation.

The UNIREP test statistic for the general linear multivariate model is proportional to the

ratio of the trace of the hypothesis sum of squares matrix, Δ̂ = (Θ̂ − Θ0) M−1 (Θ̂ − Θ0), to the

trace of error sum of squares matrix, νeΣ̂
* = νeU′Σ̂U:
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(2)

with Σ̂ = (Y − X B̃)′ (Y − X B̃) / νe and M = C (X′ X)− C′. The statistic tu is a one-to-one

function of the sample estimate η̂
u = tr (Δ̂) = [tr (Δ̂) + νetr(Σ̂

*)] for the UNIREP measure of

multivariate association:

(3)

Chi et al. [5] showed that under the null hypothesis H0 : Θ = Θ0, regardless of the ratio of

sample size to the number of variables, the distribution function of tu can be expressed

exactly as

(4)

(5)

with ykh ~ χ2(a) independent of yke ~ χ2(νe) for k ∈ {1, 2, ⋯, b}. With ,

the exact null distribution of tu is invariant to global scale change in outcome space. From

the prospective of principal component analysis, eigenvalues {λk} can be interpreted as

variances of the principal components of hypothesis variables Yu = YU, while the scaled

eigenvalues {πk} can be interpreted as proportions of variances explained by the principal

components.

Chi et al. [5] extended the Box F approximation to the high dimension, low sample size

setting:

(6)

Here,  is the sphericity parameter quantifying the spread of

population eigenvalues {λk} of Σ*. They proposed a new estimator of ε, based on matching

moments of the dual of the error covariance matrix. Their estimator is

(7)

with

(8)
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(9)

(10)

Simulation results reported in Section 4 (including Tables III– VIII and Figure 2) of Chi et

al. [5] demonstrate that their method (studied in the present paper) accurately controls type I

error rate and has reasonable power even with a handful of subjects and thousands or more

outcome variables. Chi et al. [5] reported empirical type I error rates for data simulated with

b < νe (low dimension, high sample size) or b > νe (high dimension, low sample size). The

range of designs included one-sample comparisons, two-sample comparisons, and three-

sample comparisons with a covariate. Their test (T2 in [5], also studied here) better

controlled the type I error rate than the classic UNIREP tests when b > νe. The new test also

outperformed the asymptotic tests proposed by Srivastava and Du [7] and Srivastava and

Fujikoshi [8], especially with a small sample size.

2.2. New results: Exact non-null distribution

Analytic power calculation requires knowing the distribution of the statistic under the

alternative hypothesis (e.g., H1 : Θ ≠ Θ0). In this section, we describe the exact noncentral

distribution of tu and its properties and delay the discussion about approximation to the next

section.

Theorem 1 gives a simple expression for the exact noncentral distribution of tu, which has a

parallel form to the null distribution in Equation (5), except with ykh ~ χ2(a, ωk) for k ∈ {1,

2, ⋯, b}. The noncentral distribution is fully determined by specifying 3 constants and 2 · b

parameters. The constants are determined by the design and hypothesis: (1) the error degrees

of freedom, νe, (2) the number of between-subject contrasts, a, and (3) the number of

within-subject contrasts, b. The unknown sets of sufficient parameters are {πk} and {ωk}.

The noncentrality parameters {ωk} are the diagonal elements of Ωt, the transformed, scaled

non-centrality for the hypothesis sums of squares matrix Δ̂. Theorem 2(b) states that each

noncentrality parameter is a one-to-one function of , the squared multiple semi-partial

correlation between principal components of hypothesis variables Yu, and the set of

predictors tested, with the predictors adjusted for all untested predictors in the model. The

relationship is

(11)

Theorem 2(c) expresses the UNIREP measure of multivariate association in Equation (3) as

(12)
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The squared multiple correlations  are the univariate-multivariable coefficients of

determination. They describe the proportion of variance in principal component k explained

by the set of a predictors tested in the hypothesis (adjusted for predictors in the model but

not included in the test). The interpretability of  allows straightforward elicitation of

{ωk}. Together, {πk} and  define one set of sufficient parameters for exact noncentral

distribution of tu. They are the variance and correlation parameters characterizing the

population structure in the principal component space. The sufficiency allows simplifying

study planning and simulation designs because eliciting high-dimensional variance and

covariance parameters can be a daunting task. The number of parameters greatly reduces

from pq + p(p + 1)/2 in the original parameter space for B and Σ to 2 · b in the reduced space

for {πk} and .

Any test that is based on a general linear multivariate model and its associated UNIREP

statistic shares the same noncentral distribution and thus is power equivalent when N, νe, a,

b, {πk}, and {ωk} are the same (Corollary 1). The equivalence holds if {λk} replaces {πk} or

 replaces {ωk}.

In Table II, three power-equivalent hypothesis testing scenarios are defined and depicted.

Theorem 2(a) gives details of their statistical properties. The three scenarios share both {πk}

and {ωk} in addition to constants N, νe, a, and b. Scenario S1 has the original multivariate

model defined in Equation (1), while scenarios S2 and S3 are based on transformed versions

of the original model. Scenarios S2 has outcome variables Y2 = YU ϒ = Yu ϒ. With 𝓥(rowi

(Y2)) = Dg(λ), outcome variables for scenario S2 are principal components of the hypothesis

variables. The power equivalence between scenarios S1 and S2 allows assuming a diagonal

hypothesis error covariance matrix Σ* without loss of generality.

Following the notation in Table I, scenario S3 in Table II has outcome variables Y3 = T Y2

with  and RD the eigenvectors of D′ D for D = CRX+Dg(sX+)−1. Also,

it has a simple, generic design matrix  and between-subject contrast matrix [Ia 0].With

𝓥(rowi(Y3)) = Dg(λ), outcome variables for scenario S3 are transformed components of the

hypothesis variables. The power equivalence between scenarios S1 and S3 allows assuming a

diagonal hypothesis error covariance matrix Σ* and canonical design and contrast matrices

without loss of generality. An important implication is that simulation results for diagonal

Σ* and canonical structure generalize to models with any covariance and design structure.

2.3. New results: Approximate non-null distribution

The lack of a closed form for the exact distribution of tu leads to considering an

approximation. By the method of moments, the distribution of tu under the alternative

hypothesis H1 : Θ ≠ Θ0 can be approximated by a noncentral F distribution, namely

(13)
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Theorem 3 provides detailed expressions for parameters εn, εd = ε, and ωu, all functions of

{λk} and {ωk}. Under the null hypothesis, ωu = 0 and εn = ε, leading to the central F

approximation in Equation (6). At the test size α, power can be approximated by computing

1 − Pr{F(abεn, bνeεd, ωu) ≤ fcrit} with Pr {F (abE (ε̃), νebE(ε̃)) ≤ fcrit} = 1 − α. We extend

the results in [11] to approximate E(ε̃) by  with ε̃
HF = τ̂

1/ (bτ̂
2)

= [νe + 1)bε̂ − 2] / [b (νe − b ε̂] and .

The noncentral F approximation is fully determined by only three parameters, namely εn, εd

= ε, and ωu. Here, ωu can be expressed as a function of εn and ηu, the UNIREP measure of

multivariate association in Equation (12). Both εn and ωu contains information pertaining to

the magnitude and location of the association between the principal components of the

hypothesis variables and the predictors tested. The minimum, sufficient parameter set for

approximation (3 parameters) can be fully determined by the minimum, sufficient parameter

set for exact power calculation (2b parameters), which in turn can be fully determined by the

original parameter set (pq + p(p + 1)/2 parameters).

2.4. New results: Power calculation with estimated population parameters

As discussed in [16], statisticians frequently fix mean values and calculate power or sample

size using a variance estimate from an existing study. For the general linear multivariate

model given in Equation (1), fixed primary parameter matrix B leads to fixed secondary

parameter matrix Θ and in turn to fixed hypothesis sum of squares matrix Δ. Adding a well-

estimated Σ is sufficient for calculating an estimated power. A full rank estimate of Σ from

an existing study allows estimating scaled eigenvalues of Σ*, which in turn leads to

specifications of the minimum sufficient parameters {πk} and {ωk} for the exact noncentral

distribution. When the existing data have more variables than subjects, the estimator of Σ is

singular and does not have adequate information to accurately provide estimates of the

population eigenvalues [17].

In order to use data from an existing study with more variables than subjects, additional

steps must be taken to estimate power for a new study. In practice, the three parameters {εd,

εn, ωu} suffice to specify the approximate noncentral F distribution (Equation (13)). By

using Equations (8)–(10), we can first compute τ̂
10, τ̂

20, and νa0 from the existing data

(hence the subscript 0) of sample size N0, design matrix X0, error degrees of freedom νe0 =

N0 − rank(X0), and hypothesis error covariance matrix Σ̂
*0. We can then use Equations (7),

(20), and (22) to estimate {εd, εn, ωu} as

(14)

(15)
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(16)

with Δt = (CBU − Θ0)′ [C (X′tXt)− C′]−1 (CBU − Θ0) and Xt the design matrix for the

planned study. We note that the primary parameter matrix B is generally known and does

not require estimation. The existing data are used only to estimate Σ by Σ̂
0, leading to which

immediately gives estimates of Σ* and functions of Σ*, such as tr(Σ*), tr2(Σ*), and εd.With

estimates of {εd, εn, ωu} in hand, power can be approximated by computing 1 − Pr{F (abε̂
n,

bνeε̂
d, ω̂

u) ≤ f̂crit} with Pr {F (abε̃, νebε̃) ≤ f̂crit} = 1 − α at the test size α. The form for the

estimated critical value f̂crit is based on the results from the extensive simulations in [18].

Variance estimates are known to have wide sampling distributions. Browne [19], Taylor and

Muller [16, 20], and Muller and Pasour [21] described how to account for using estimates in

power calculations in various settings with the univariate model. In the univariate setting,

the 100(1 − β)th percentile of the variance estimates can be used to achieve the planned

power in at least 100(1 − β)% of such studies. In the multivariate setting, which is the focus

of the present manuscript, estimates for the b × b covariance matrix Σ* lead to estimates of

the parameters {εd, εn, ωu} and the critical value f0 (Equation (13)). Gribbin et al. [18]

addressed the question for traditional low-dimensional designs with the sample size greater

than the number of variables. Extending their results to the high dimension, low sample size

design remains a topic for future research. Computing confidence bounds for power and

sample size provides a natural solution to account for the variation and ensure achieving the

planned power.

3. Simulations

3.1. Design

Designing simulations with high-dimensional outcomes can be difficult as the number of

variance and covariance parameters is of the magnitude of the squared number of outcomes,

that is, b(b + 1)/2. On the basis of Corollary 2, power equivalence between scenarios S1 and

S4 allows greatly simplifying the task. Scenario S1 uses the general linear multivariate model

Y = XB + E with no constraints on the mean of Y, namely XB, or on the covariance structure

of the errors, namely Σ. In contrast, scenario S4 is based on the model Y 4 = X4B4 + E4,

which has four constraints: (1) independent errors, 𝓥[rowi (E′4)] = Dg(π); (2) orthonormal

predictors, X′4X4 = Ir ; (3) primary parameter matrix B4 is sparse with all zeros except in the

first row; and (4) simple contrast matrices, C4 = [Ia 0] and U4 = Ib. The power equivalence

between scenarios S1 and S4 results from sharing a, b, νe, {πk}, and {ωk} (or ).

We designed our simulations on the basis of the data structures in scenario S4. For both one-

sample and two-sample comparisons, we adopted a five-way complete factorial design with

factors b ∈ {64, 256, 1024}, N ∈ {10, 20, 40}, ε ∈ {0.27, 0.56, 0.76}, number of nonzero

, and the location of nonzero  at either the most dominant or middle

components in hypothesis space. We also simulated a three-sample comparison with the

same factorial design except for using N ∈ {12, 24, 48} with equal size groups. We varied

the number of nonzero  in order to address the power differences expected to result
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between concentrated and diffuse patterns of effect [22]. The location of nonzero  dictates

the sources of variation that are accounted for by predictors tested. The ordered, scaled

variances π1, …, πb and τ were selected with πk = (b − k + 1)τ such that ε ∈ {0.27, 0.56,

0.76}, and ∑k πk = 1. The values of nonzero  were set equal to each other and selected to

achieve target power P ∈ {0.2, 0.5, 0.8, 0.9} for b = 64, and P ∈ {0.8, 0.9} for b ∈ {256,

1024}. All simulations used 100,000 replications and α = 0.05.

When b ∈ {256, 1024} and ε = 0.27, some of the variance ratios πk/π1 are numerical zeros,

leading to an untestable hypothesis. The observation can be formalized as a generalization of

Corollary 15.1 in [14] in the following way. A test for Θ4 = C4B4U4 is indistinguishable

from a test for Θ4* = C4BU4*, with U4* = [Ib* 0]′ and b* the number of the variance ratios

πk/π1 greater than zeros, numerically. In order to assess whether the result was of practical

concern, we compared power approximations for testing Θ4 and Θ4*. We observed that the

approximated power values for the b-dimensional and b*-dimensional tests coincide to at

least the fourth decimal place. The expectation E(ε̃) varies at the third decimal place, leading

to small differences in the critical values expected. We therefore report the simulation

results for testing Θ4 when the entire outcome space is considered.

3.2. One-sample problem

Table III displays a summary of absolute differences between the empirical and

approximated power values. Performance of our proposed approximation was evaluated and

summarized across a range of sample sizes N, covariance structures (governed by ε), and

patterns of non-null effects (i.e., number and location of nonzero ). Across the board, our

approximation produced absolute biases with both means and standard deviations less than

0.005. As the number of outcomes increased, the mean and standard deviation decreased.

Overall, accuracy improved with number of outcomes, as well as sample size. The results

are particularly useful for planning nutritional research when one-sample design is

commonly used for studies comparing pre-intervention and post-intervention profiles.

3.3. Two-sample problem

Two-sample comparisons are very common in genomic and microarray research. Table IV

summarizes the absolute bias when approximating power for testing differences between

two groups. Both the means and standard deviations of the absolute biases were less than

0.01 when target power P ∈ {0.2, 0.5, 0.8, 0.9} and number of hypothesis outcomes b ∈

{64, 256, 1024}. Table V shows a detailed summary for b = 64 and P = 0.9 for a variety of

sample sizes, noncentrality pattern, and covariance pattern. In general, as sample size

increased, the bias decreased. The approximation worked slightly better when the group

differences arose from the most dominant principal components of the hypothesis variables

than from the middle dominant principal components. Overall, all documented biases were

less than 0.03, giving approximated power in the range between 0.90 and 0.93.
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3.4. Three-sample problem

Table VI summarizes the power accuracy for three-sample comparisons. Average bias was

below 0.03, slightly higher than for one-sample and two-sample designs. Despite that, for

power and sample size calculation, a bias at the level of 0.03 is usually acceptable.

4. Study of vitamin B6 deficiency

Chi et al. [5] illustrated an example data analysis by considering static concentrations of 19

amino acids from 12 healthy participants. The 19 concentrations were collected before and

after a 4-week diet low in vitamin B6. The objective was to assess the metabolic

consequences of marginal deficiency of vitamin B6. The data were logarithmically

transformed (to meet the Gaussian distributional assumption) before computing pre/post

difference scores. Testing the mean vector equal to zero gave a small p-value indicating

significant change in metabolic profile after vitamin B6 restriction.

With 19 variables, fixed values for their correlations and variances (190 parameters) are not

readily available. The existing data provide a means to estimate the covariance and

correlation parameters required to compute approximated power for a future study intended

to replicate the results of the previous study. As discussed by Lenth [23] and others, using

observed means and observed variances for power calculation as an adjunct to data analysis

has no value. It does have value for planning a new study to replicate results, perhaps with a

larger or smaller sample size. In the example discussed in the current section, we perform

power calculations for a number of interesting and plausible patterns of mean differences.

Muller and Stewart [14] (Section 20.5) provided additional discussion, especially in the

context of research reported in [20] on the bias introduced by conducting power analysis

only if the previous research did (or did not) give a significant result.

Equations (14)–(16) were used to estimate {εd, εn, ωu} with a = 1 (for one group pre-

intervention and post-intervention comparison) and b = 19 after computing τ̂
10, τ̂

20, and νa0

using the existing data of sample size N0 = 12. At the 0.05 significance level, our calculation

led to an overall power of 0.83 when the target sample size is 10, and all amino acids exhibit

a mean absolute difference (diffused effects), after logarithmic transformation, of 0.14

log(µmol/L). In contrast, with the same level of effect across all amino acids, the overall

power increases to 0.96 for a target sample size of 15. Power was also calculated for a

concentrated effect with a difference only in cystathionine, the amino acid that has been

shown in the literature to inversely relate to the B6 abundance. At a mean difference of 0.55

log(µmol/L) for cystathionine, the estimated power is 0.86 for a target sample size of 10 and

0.98 for a target sample size of 15.

Figure 1 shows the approximate power curves as a function of the mean difference for

diffused (top) and concentrated (bottom) effects. Both cases use a single multiplier for the

entire set of outcome variables. Nonetheless, our methods apply to calculations that require

different multipliers for different sets of outcome variables. The free, downloadable

POWERLIB software implementing our methods was specifically configured to allow any

pattern of multipliers. Our collaborators were able to make an informed decision in selecting

sample size by comparing the power values for different sample sizes and patterns of effects.
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In the example, the nuisance parameters for covariance and correlation were estimated from

the existing data and used in power approximation to compute estimated power. Simulations

were conducted to evaluate the accuracy of power approximation as a result of estimating

population parameters. With 100,000 replications, the differences between the empirical and

our approximated power range from 0.001 to 0.065 for the six designs of varied sample and

effect sizes. The results demonstrate the accuracy of our power approximation and

estimation methods when estimates of covariance and correlation parameters are used.

5. Discussion

Power calculation for a sample size less than the number of variables is required for

planning studies involving high-throughput methods. We provided exact results to help

understand the problem and derive properties. An accurate approximation was developed

and has been implemented in the existing free SAS/IML software called POWERLIB (the

updated version with the new methods will be made available when the paper is accepted for

publication: https://github.com/SampleSizeShop/POWERLIB). We also described a

moment-based approach for using existing data in planning a replication study and applied

the method to a study of vitamin B6 deficiency.

Further advancements on approximating power with estimated parameters require future

analytical and numerical work. Extensions can be sought on two aspects. First, methods for

computing confidence bounds for power and sample size are needed to quantify the

uncertainty as a result of using observed data in a power analysis. Second, different theory

and computation of power analysis are needed when random predictors (i.e., with values

unknown before data collection) are present.

With massive data collected from high-throughput platforms, we urge anyone conducting

data analysis, power analysis, or simulations to practice safe computing. Numerical

inaccuracy and computer memory issues can easily emerge when the number of variables

grows into the thousands. We aim to continue upgrading our software for its computational

efficiency and user interface.
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Appendix A

Notation in Tables I and II is used throughout the Appendix without specific references.

Theorem 1

For the model in hypothesis testing scenario S1 in Table II, the distribution function of tu =

[tr (Δ̂) / a] / [tr (Σ̂
*)] can be expressed exactly as
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(17)

with ykh ~ χ2(a, ωk) independent of yke ~ χ2(νe) for k ∈ {1, 2, ⋯, b}, and ωk = υ′k Δυk/λk for

υk and λk a corresponding eigenvector and eigenvalue of Σ*. Under the null hypothesis, the

noncentrality parameter ωk = 0, leading to ykh ~ χ2(a) for k ∈ {1, 2, ⋯, b}. The theorem

applies for data with b ≤ νe or b > νe. The exact noncentral distribution is fully determined

by a, b, νe, {πk}, and {ωk}.

Proof

Under the Gaussian assumption E ~ N,p(0, IN, Σ) with b ≤ νe or b > νe, Chi et al. [5]

proved that both the hypothesis and error sum of square matrices, Δ̂ = (Θ̂ − Θ0)′ M−1 (Θ̂ −

Θ0) and νe Σ̂
* = νeU′Σ̂U, follow a Wishart distribution and are mutually independent,

namely Δ̂ ~ ( ) b(a, Σ*, Ω) ⊥ νe Σ*̂ ~ ( ) b(νe, Σ*, 0). With Σ* = ϒDg(λ)ϒ′,

 for ϒ′Δ̂ ϒ ~ ( ) b(a, Dg (λ), Ωt), ykh ~ χ2(a, ωk), and

ωk = υ′kΔυk/λk the kth diagonal element of Ωt = (ϒ′Δϒ)Dg(λ)−1 [24]. Similarly,

 for νeϒ′ Σ̂*ϒ′ ~ ( ) b(νe, Dg(λ), 0), and yke ~

χ2(νe). Independence between Δ̂ and Σ̂
* leads to independence between {ykh} and {yke} and

between tr(Δ̂) and tr (Σ̂
*). Finally

Corollary 1

a. Any distinct scenario with a model and hypothesis giving the same a, b, νe, {πk},

and {ωk} has a test statistic with the same distribution, the same type I error rate,

and the same power.

b. It is sufficient (but not necessary) for power equivalence that two scenarios have

the same a, b, νe, transformed, scaled noncentrality for the hypothesis sums of

squares, Ωt, and {λk}.

Proof

The truth of each part of the corollary follows directly from the fact that the parameters

listed fully specify the distribution of tu.
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Theorem 2

a. In Table II, testing H0 : Θ = Θ0 in scenario S1 is power equivalent to testing the

hypothesis H0 : (Θ − Θ0)ϒ = 0 in scenarios S2, which is power equivalent to testing

the hypothesis H0 : T D(Θ − Θ0)ϒ = 0 in scenarios S3 for T D = Dg(sD+)−1L′D+.

b. Each noncentrality parameter needed to apply Theorem 1 is a one-to-one function

of , namely , while  for k ∈ {1,

2, ⋯, b}. With y2k column k of Y 2,  equals the squared multiple semi-partial

correlation between y2k and the set of predictors tested, with the predictors adjusted

for all untested predictors in the model.

c. The population value of the UNIREP measure of multivariate association

.

Proof

a. By inspection, it is clear that the three scenarios in Table II share (1) the same

number of between-subject contrasts, (2) the same number of within-subject

contrasts, (3) the same sample size, and (4) the same rank of design matrix, which

ensure the three scenarios have the same a, b, N, and νe. In scenario S2, B2 = [BU −

C′(CC′)−1Θ0] ϒ gives the secondary parameter matrix CB2Ib = CBUϒ − CC′CC
′)−1Θ0ϒ = (Θ − Θ0)ϒ and the unscaled noncentrality for the hypothesis sums of

squares [(Θ − Θ0)ϒ]′ M−1 [(Θ − Θ0)ϒ] = Δt. With E ~ N,p(0, IN, Σ), Theorem

8.12 in [14] ensures E2 = EUϒ ~ N,b[0, IN, Dg(λ)] for 𝓥[rowi (E2)]′ = ϒ′U′ΣUϒ

= ϒ′Σ* ϒ = Dg(λ). The eigenvalues of Σ* = ϒDg(λ)ϒ′ (the hypothesis error

covariance matrix for scenario S1) are also the eigenvalues of Dg(λ) (hypothesis

error covariance matrix for scenarios S2 and S3).

If D = CRX+Dg(sX+)−1, then singular value decomposition gives D =

[LD+LD0]Dg(sD+, 0)[RD+RD0]′ = LD+Dg(sD+)R′D+ with RD = [RD+RD0]. Also, TD

= Dg(sD+)−1L′D+ and . For scenario S3, with

, Theorem 8.12 in [14] ensures E3 = TE2 ~ N,b[0, IN,

Dg(λ)] for . By

Theorem 11.4 in [14], estimability of the secondary parameter matrix gives C =

C(X′ X)−(X′ X). The result holds for any generalized inverse and therefore for the

Moore–Penrose: C = C(X′ X)+(X′ X) = CRX+R′X+. Scenario S3 has primary

parameter matrix B3 = R′DDg(sX+)R′X+B2 and secondary parameter matrix Θ3 = [Ia

0] B3Ib = R′D+ Dg(sX+)R′X+) R′X+B2. In turn,

, and Θ3 =

TD(Θ − Θ0)ϒ. Scenario S3 has middle matrix

. Using the fact that
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allows writing the unscaled noncentrality for scenario S3 as [T D(Θ − Θ0)ϒ]′(Ia)−1T

D(Θ − Θ0)ϒ = [ϒ(Θ − Θ0)′[C(X′ X)+C′]−1[(Θ − Θ0)ϒ = Δt. In turn, scenarios S1

(which uses the original model) and S2 and S3 (which use transformed versions of

the original model) have the same transformed, scaled noncentrality, Ωt, for the

hypothesis sums of squares. The power equivalence among scenarios S1, S2, and S3

follows from part (b) of the corollary to Theorem 1.

b. The model for S2, that is, Y 2 = XB2 + E2, contains b univariate models, namely y2k

= Xβ2k + e2k with column k of E2 being e2k ~ (0, λkIN) for k ∈ {1, 2, ⋯, b}. For

each univariate model, the noncentrality parameter [14, Definition 2.6] is

(18)

which is exactly the noncentrality parameter k for hypothesis testing scenario S1.

From the univariate theory [14, Equation 2.19]), . Also,

 with ρk the multiple semi-partial correlation between y2k and the

set of predictors tested, with the predictors adjusted for all untested predictors in

the model.

c.
With  and definition of ηu in Equation (3),
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Corollary 2

For any general linear multivariate model Y = XB + E and hypothesis H0 : Θ = CBU = Θ0

(scenario S1), there exists a power-equivalent scenario (called scenario S4) with model Y4 =

X4B4 + E4 and hypothesis H0 : Θ4 = 0. Here,  for b × 1 vector β4

with β4k = (πkωk)1/2, 𝓥(E4) = Dg(π), C4 = [Ia 0], U4 = Ib, and Θ4 = C4β4U4.

Proof

Scenario S4 has unscaled noncentrality for hypothesis sum of squares

, and transformed, scaled noncentrality

. In turn, diagonal element k of Ω4 is . Hence, by part

(a) of Corollary 1, scenario S4 is power equivalent to scenario S1.

Theorem 3

a. By the method of moments, the distribution of tu can be approximated by an F

distribution with numerator degrees of freedom abεn, denominator degrees of

freedom bνeεd, and noncentrality ωu, that is

(19)

with

(20)

(21)
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(22)

Under the null hypothesis, all ωk = 0, leading to εn = ε and a central F

approximation coinciding with the result given by Chi et al. [5].

b. One minimum set of sufficient constants and parameters for the F approximation

consists of a, b, νe, εn, εd, and ωu.

Proof

a.
With , we apply Theorem 2 from [25] and show that for the

form in (2), Pr{tu ≤ f0} ≈ Pr{F(ν*1, ν*2, ωu) ≤ f0ϕ} with 

and

(23)

(24)

(25)

(26)

(27)

Hence, , and ϕ = (λ*2/λ*1)

(ab/ν*1)ν*2/(bνe) = 1. Under the null hypothesis, all ωk = 0, leading to

 and ωu = 0. (b) With Equation (19), it follows that {a, b,
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νe, εn, εd, ωu} are a minimum-dimension set of constants and parameters sufficient

for the F approximation.
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Figure 1.
Approximate overall power for replicating the vitamin B6 study when sample size is 10

(solid curve) or 15 (dashed curve). The top plot is for diffused effects occurring across all

amino acids, and the bottom plot is for a concentrated effect on cystathionine only. The

horizontal axis is the mean difference of logarithmically transformed concentration.
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Table I

Parameters and constants for general linear multivariate model Y = XB + E and associated general linear

hypothesis H0 : Θ = Θ0.

Symbol Size Definition and properties

N 1×1 Sample size

p 1×1 Number of outcome variables

q 1×1 Number of predictors

X = LX+Dg(sX+)R′X+ N×q Fixed, known design matrix

RX+ q ×r Range eigenvectors of X′X, R′X+RX+ = Ir

LX = [LX+ LX0] N ×N All eigenvectors of XX′, L′XLX = IN

r = rank(X) 1×1 Rank of design matrix

νe = N − r 1×1 Error degrees of freedom

B q ×p Primary (mean) parameters

a 1×1 Number of between-subject contrasts

b 1×1 Number of within-subject contrasts

C a ×q Between-subject contrast matrix

U p ×b Within-subject contrast matrix

Θ = CBU a ×b Secondary parameters

Θ0 a ×b Null values for testing Θ

M = C (X′X)−C′ a ×a Middle matrix

Δ = (Θ − Θ0)′M−1 (Θ − Θ0) b×b Unscaled noncentrality of Δ̂

Σ p ×p Error covariance, 𝓥 {[rowi (E)]′}

Σ* = U′ΣU = ϒDg(λ)ϒ′ b ×b Hypothesis error covariance, 𝓥 {[rowi (EU)]′}

λ = [λ1 λ2 ⋯ λb]′ b ×1 Vector of eigenvalues of Σ*

ϒ = [υ1 υ2 ⋯ υb] b ×b Eigenvectors of Σ*, ϒϒ′ = ϒ′ ϒ = Ib

1 ×1 Sum of eigenvalues of Σ*

πk = λk/λ+ 1 ×1 The kth scaled eigenvalue of Σ*

1 ×1 Sphericity parameter

b ×b Scaled noncentrality of Δ̂

Δt = ϒ′Δϒ b × b Transformed, unscaled noncentrality of Δ̂

Ωt = ΔtDg(λ)−1 b × b Transformed, scaled noncentrality of Δ̂

1 ×1 The kth diagonal element of Ωt

1 ×1 Squared semi-partial correlation for ωk
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Chi et al. Page 22

Table II

UNIREP power-equivalent hypothesis testing scenarios based on transformed models sharing the same N, νe,

a, and b.

Hypothesis testing scenario

Feature S1 S2 S3

Model Y = XB + E Y2 = XB2 + E2

YUϒ = XB2 + EUϒ

Outcome space Original data Principal components in hypothesis space Transformed components in hypothesis space

Number of outcomes p b b

Number of predictors q q r

Primary parameters B B2 = [BU − C′(CC′)−1Θ0]ϒ B3 = R′DDg(sX+)R′X+B2

Error covariance 𝓥(E) = Σ 𝓥(E2) = Dg(λ) 𝓥(E3) = Dg(λ)

Between-subject contrast C C [Ia 0]

Within-subject contrast U Ib Ib

Secondary parameters CBU = Θ (Θ − Θ0)ϒ TD(Θ − Θ0)ϒ

Hypothesis error covariance U′ΣU = Σ* Dg(λ)

Null hypothesis H0 : Θ = Θ0 H0 : (Θ = Θ0)ϒ = 0 H0 : TD(Θ = Θ0)ϒ = 0

Unscaled noncentrality Δ ϒ′Δϒ = Δt Δt

 L′Xfor RD eigenvectors of D′D with D = CRX+Dg(sX+)−1.

TD = Dg(sD+)−1L′D+ for singular value decomposition D = LD+Dg(sD+)R′D+.

Stat Med. Author manuscript; available in PMC 2015 February 28.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chi et al. Page 23

T
ab

le
 II

I

A
bs

ol
ut

e 
di

ff
er

en
ce

 b
et

w
ee

n 
em

pi
ri

ca
l a

nd
 a

pp
ro

xi
m

at
ed

 p
ow

er
 f

or
 a

 o
ne

-s
am

pl
e 

de
si

gn
.

E
m

pi
ri

ca
l, 

ab
so

lu
te

 b
ia

s 
in

 p
ow

er

N
um

be
r 

of
ou

tc
om

es
N

um
be

r 
of

co
nd

it
io

ns
A

pp
ro

xi
m

at
ed

po
w

er
M

in
M

ax
M

ea
n

St
an

da
rd

 d
ev

ia
ti

on

64
36

0.
20

0.
00

0
0.

01
0

0.
00

4
0.

00
3

64
36

0.
50

0.
00

0
0.

02
4

0.
00

4
0.

00
5

64
36

0.
80

0.
00

0
0.

00
5

0.
00

2
0.

00
1

64
36

0.
90

0.
00

0
0.

01
3

0.
00

2
0.

00
3

25
6

36
0.

80
0.

00
0

0.
00

5
0.

00
2

0.
00

1

25
6

36
0.

90
0.

00
0

0.
00

5
0.

00
2

0.
00

1

10
24

36
0.

80
0.

00
0

0.
00

4
0.

00
1

0.
00

1

10
24

36
0.

90
0.

00
0

0.
00

3
0.

00
1

0.
00

1

E
ac

h 
lin

e 
su

m
m

ar
iz

es
 3

6 
si

m
ul

at
io

n 
co

nd
iti

on
s 

in
 a

 f
ou

r-
w

ay
 f

ac
to

ri
al

: N
 ∈

 {
10

, 2
0,

 4
0}

, ε
 ∈

 {
0.

27
, 0

.5
6,

 0
.7

6}
, n

um
be

r 
of

 n
on

ze
ro

 
 o

f 
4 

or
 3

2,
 a

nd
 lo

ca
tio

n 
of

 n
on

ze
ro

 
 a

t e
ith

er
 th

e 
m

os
t d

om
in

an
t o

r

m
id

dl
e 

co
m

po
ne

nt
s 

in
 h

yp
ot

he
si

s 
sp

ac
e 

(1
00

,0
00

 r
ep

lic
at

io
ns

 p
er

 c
on

di
tio

n)
.

Stat Med. Author manuscript; available in PMC 2015 February 28.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chi et al. Page 24

T
ab

le
 IV

A
bs

ol
ut

e 
di

ff
er

en
ce

 b
et

w
ee

n 
em

pi
ri

ca
l a

nd
 a

pp
ro

xi
m

at
ed

 p
ow

er
 f

or
 a

 tw
o-

sa
m

pl
e 

de
si

gn
.

E
m

pi
ri

ca
l, 

ab
so

lu
te

 b
ia

s 
in

 p
ow

er

N
um

be
r 

of
ou

tc
om

es
N

um
be

r 
of

co
nd

it
io

ns
A

pp
ro

xi
m

at
ed

po
w

er
M

in
M

ax
M

ea
n

St
an

da
rd

 d
ev

ia
ti

on

64
36

0.
20

0.
00

1
0.

00
1

0.
00

6
0.

00
3

64
36

0.
50

0.
00

0
0.

03
4

0.
01

1
0.

01
0

64
36

0.
80

0.
00

1
0.

03
7

0.
01

1
0.

01
0

64
36

0.
90

0.
00

1
0.

02
8

0.
00

9
0.

00
6

25
6

36
0.

80
0.

00
1

0.
03

1
0.

01
0

0.
00

9

25
6

36
0.

90
0.

00
1

0.
02

4
0.

00
9

0.
00

6

10
24

36
0.

80
0.

00
0

0.
02

7
0.

01
1

0.
00

9

10
24

36
0.

90
0.

00
1

0.
02

2
0.

00
9

0.
00

6

E
ac

h 
lin

e 
su

m
m

ar
iz

es
 3

6 
si

m
ul

at
io

n 
co

nd
iti

on
s 

in
 a

 f
ou

r-
w

ay
 f

ac
to

ri
al

: N
 ∈

 {
10

, 2
0,

 4
0}

, ε
 ∈

{0
.2

7,
 0

.5
6,

 0
.7

6}
, n

um
be

r 
of

 n
on

ze
ro

 
 o

f 
4 

or
 3

2,
 a

nd
 lo

ca
tio

n 
of

 n
on

ze
ro

 
 a

t e
ith

er
 th

e 
m

os
t d

om
in

an
t o

r

m
id

dl
e 

co
m

po
ne

nt
s 

in
 h

yp
ot

he
si

s 
sp

ac
e 

(1
00

,0
00

 r
ep

lic
at

io
ns

 p
er

 c
on

di
tio

n)
.

Stat Med. Author manuscript; available in PMC 2015 February 28.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chi et al. Page 25

T
ab

le
 V

E
m

pi
ri

ca
l a

nd
 a

pp
ro

xi
m

at
ed

 p
ow

er
 f

or
 a

 tw
o-

sa
m

pl
e 

de
si

gn
 w

ith
 b

 =
 6

4,
 a

nd
 a

pp
ro

xi
m

at
ed

 p
ow

er
 is

 0
.9

0.

Sa
m

pl
e

si
ze

Sp
he

ri
ci

ty
pa

ra
m

et
er

 ε
N

um
be

r 
of

no
nz

er
o 
ρ k2

L
oc

at
io

n 
of

no
nz

er
o 
ρ k2

E
m

pi
ri

ca
l

po
w

er
A

bs
ol

ut
e

bi
as

10
0.

27
4

T
op

0.
90

9
0.

00
9

10
0.

27
4

M
id

dl
e

0.
92

9
0.

02
9

10
0.

27
32

T
op

0.
91

4
0.

01
4

10
0.

27
32

M
id

dl
e

0.
92

1
0.

02
1

10
0.

56
4

T
op

0.
90

9
0.

00
9

10
0.

56
4

M
id

dl
e

0.
91

6
0.

01
6

10
0.

56
32

T
op

0.
91

2
0.

01
2

10
0.

56
32

M
id

dl
e

0.
91

6
0.

01
6

10
0.

76
4

T
op

0.
91

0
0.

01
0

10
0.

76
4

M
id

dl
e

0.
91

4
0.

01
4

10
0.

76
32

T
op

0.
91

1
0.

01
1

10
0.

76
32

M
id

dl
e

0.
91

4
0.

01
4

20
0.

27
4

T
op

0.
90

4
0.

00
4

20
0.

27
4

M
id

dl
e

0.
92

0
0.

02
0

20
0.

27
32

T
op

0.
90

6
0.

00
6

20
0.

27
32

M
id

dl
e

0.
91

2
0.

01
2

20
0.

56
4

T
op

0.
90

5
0.

00
5

20
0.

56
4

M
id

dl
e

0.
90

5
0.

00
5

20
0.

56
32

T
op

0.
90

4
0.

00
4

20
0.

56
32

M
id

dl
e

0.
90

5
0.

00
5

20
0.

76
4

T
op

0.
90

3
0.

00
3

20
0.

76
4

M
id

dl
e

0.
90

5
0.

00
5

20
0.

76
32

T
op

0.
90

6
0.

00
6

20
0.

76
32

M
id

dl
e

0.
90

6
0.

00
6

40
0.

27
4

T
op

0.
90

3
0.

00
3

40
0.

27
4

M
id

dl
e

0.
91

9
0.

01
9

40
0.

27
32

T
op

0.
90

4
0.

00
4

Stat Med. Author manuscript; available in PMC 2015 February 28.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chi et al. Page 26

Sa
m

pl
e

si
ze

Sp
he

ri
ci

ty
pa

ra
m

et
er

 ε
N

um
be

r 
of

no
nz

er
o 
ρ k2

L
oc

at
io

n 
of

no
nz

er
o 
ρ k2

E
m

pi
ri

ca
l

po
w

er
A

bs
ol

ut
e

bi
as

40
0.

27
32

M
id

dl
e

0.
90

9
0.

00
9

40
0.

56
4

T
op

0.
90

3
0.

00
3

40
0.

56
4

M
id

dl
e

0.
90

3
0.

00
3

40
0.

56
32

T
op

0.
90

4
0.

00
4

40
0.

56
32

M
id

dl
e

0.
90

5
0.

00
5

40
0.

76
4

T
op

0.
90

3
0.

00
3

40
0.

76
4

M
id

dl
e

0.
90

1
0.

00
1

40
0.

76
32

T
op

0.
90

3
0.

00
3

40
0.

76
32

M
id

dl
e

0.
90

3
0.

00
3

L
oc

at
io

n 
of

 n
on

ze
ro

 
 c

an
 b

e 
at

 e
ith

er
 th

e 
m

os
t o

r 
m

id
dl

e 
do

m
in

an
t c

om
po

ne
nt

s 
in

 h
yp

ot
he

si
s 

sp
ac

e.

Stat Med. Author manuscript; available in PMC 2015 February 28.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Chi et al. Page 27

T
ab

le
 V

I

A
bs

ol
ut

e 
di

ff
er

en
ce

 b
et

w
ee

n 
em

pi
ri

ca
l a

nd
 a

pp
ro

xi
m

at
ed

 p
ow

er
 f

or
 a

 th
re

e-
sa

m
pl

e 
de

si
gn

.

E
m

pi
ri

ca
l, 

ab
so

lu
te

 b
ia

s 
in

 p
ow

er

N
um

be
r 

of
ou

tc
om

es
N

um
be

r 
of

co
nd

it
io

ns
A

pp
ro

xi
m

at
ed

po
w

er
M

in
M

ax
M

ea
n

St
an

da
rd

de
vi

at
io

n

64
36

0.
20

0.
00

0
0.

02
3

0.
00

7
0.

00
8

64
36

0.
50

0.
00

0
0.

02
5

0.
00

8
0.

00
9

64
36

0.
80

0.
00

0
0.

01
5

0.
00

5
0.

00
5

64
36

0.
90

0.
00

0
0.

00
9

0.
00

4
0.

00
3

25
6

36
0.

80
0.

00
0

0.
07

6
0.

02
7

0.
03

1

25
6

36
0.

90
0.

00
0

0.
05

7
0.

02
0

0.
02

3

10
24

36
0.

80
0.

00
0

0.
07

6
0.

02
7

0.
03

1

10
24

36
0.

90
0.

00
0

0.
05

6
0.

02
0

0.
02

3

E
ac

h 
lin

e 
su

m
m

ar
iz

es
 3

6 
si

m
ul

at
io

n 
co

nd
iti

on
s 

in
 a

 f
ou

r-
w

ay
 f

ac
to

ri
al

: N
 ∈

 {
10

, 2
0,

 4
0}

, ε
 ∈

 {
0.

27
, 0

.5
6,

 0
.7

6}
 n

um
be

r 
of

 n
on

ze
ro

 
 o

f 
4 

or
 3

2,
 a

nd
 lo

ca
tio

n 
of

 n
on

ze
ro

 
 a

t e
ith

er
 th

e 
m

os
t d

om
in

an
t o

r

m
id

dl
e 

co
m

po
ne

nt
s 

in
 h

yp
ot

he
si

ss
pa

ce
 (

10
0,

00
0 

re
pl

ic
at

io
ns

 p
er

 c
on

di
tio

n)
.

Stat Med. Author manuscript; available in PMC 2015 February 28.


