42 research outputs found

    John Allen Paulos, Innumeracy: Mathematical Illiteracy and its Consequences

    Get PDF
    Louis D. Grey reviews the book Innumeracy : Mathematical Illiteracy and its Consequences by John Allen Paulos. New York: Hill & Wang, 1988. By innumeracy Paulos means an inability to deal comfortably with the fundamental notions of number and chance. Paulos is talking about the problem of mathematical illiteracy, a problems that afflicts people who are otherwise very knowledgeable. Paolos uses many examples, some serious and some amusing, to illustrate that if we are uncomfortable with the reasoning to solve a mathematical problem , even using the most elementary mathematics and probability theory, then we show ourselves to be victims of innumeracy. Paolos does not provide a solution to correct the problem. This is however a charming collection of examples which point out the consequences of innumeracy

    Non-Kaehler String Backgrounds and their Five Torsion Classes

    Full text link
    We discuss the mathematical properties of six--dimensional non--K\"ahler manifolds which occur in the context of N=1{\cal N}=1 supersymmetric heterotic and type IIA string compactifications with non--vanishing background H--field. The intrinsic torsion of the associated SU(3) structures falls into five different classes. For heterotic compactifications we present an explicit dictionary between the supersymmetry conditions and these five torsion classes. We show that the non--Ricci flat Iwasawa manifold solves the supersymmetry conditions with non--zero H--field, so that it is a consistent heterotic supersymmetric groundstate.Comment: 33 pages, LaTeX; references added; one more reference adde

    Synergistic Degradation Mechanism in Single Crystal Ni-Rich NMC//Graphite Cells

    Get PDF
    Acknowledgments We acknowledge Diamond Light Source for time on beamline I09 under Proposals SI30201-1 and SI30201-2. This work is supported by the Faraday Institution under Grants FIRG044, FIRG024, and FIRG060.Peer reviewedPublisher PD

    Cytomegaloviral determinants of CD8+ T cell programming and RhCMV/SIV vaccine efficacy

    Get PDF
    Simian immunodeficiency virus (SIV) insert-expressing, 68–1 Rhesus Cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex (MHC)-E- and -II-restricted, SIV-specific CD8(+) T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) has not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68–1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158–161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8(+) T cell response types – MHC-Ia-restricted-only, or a mix of MHC-II- and MHC-Ia-restricted CD8(+) T cells. Response magnitude and functional differentiation are similar to RhCMV 68–1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8(+) T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector

    In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    Get PDF
    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations

    Electronic blackboard

    No full text
    corecore