1,177 research outputs found

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Adaptive optimization for OpenCL programs on embedded heterogeneous systems

    Get PDF
    Heterogeneous multi-core architectures consisting of CPUs and GPUs are commonplace in today’s embedded systems. These architectures offer potential for energy efficient computing if the application task is mapped to the right core. Realizing such potential is challenging due to the complex and evolving nature of hardware and applications. This paper presents an automatic approach to map OpenCL kernels onto heterogeneous multi-cores for a given optimization criterion – whether it is faster runtime, lower energy consumption or a trade-off between them. This is achieved by developing a machine learning based approach to predict which processor to use to run the OpenCL kernel and the host program, and at what frequency the processor should operate. Instead of hand-tuning a model for each optimization metric, we use machine learning to develop a unified framework that first automatically learns the optimization heuristic for each metric off-line, then uses the learned knowledge to schedule OpenCL kernels at runtime based on code and runtime information of the program. We apply our approach to a set of representative OpenCL benchmarks and evaluate it on an ARM big.LITTLE mobile platform. Our approach achieves over 93% of the performance delivered by a perfect predictor.We obtain, on average, 1.2x, 1.6x, and 1.8x improvement respectively for runtime, energy consumption and the energy delay product when compared to a comparative heterogeneous-aware OpenCL task mapping scheme

    The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties

    Full text link
    We present results on thermodynamic quantities, resistivity and optical conductivity for the Hubbard model on a simple hypercubic lattice in infinite dimensions. Our results for the paramagnetic phase display the features expected from an intuitive analysis of the one-particle spectra and substantiate the similarity of the physics of the Hubbard model to those of heavy fermion systems. The calculations were performed using an approximate solution to the single-impurity Anderson model, which is the key quantity entering the solution of the Hubbard model in this limit. To establish the quality of this approximation we compare its results, together with those obtained from two other widely used methods, to essentially exact quantum Monte Carlo results.Comment: 29 pages, 16 figure

    Conserving approximations in direct perturbation theory: new semianalytical impurity solvers and their application to general lattice problems

    Full text link
    For the treatment of interacting electrons in crystal lattices approximations based on the picture of effective sites, coupled in a self-consistent fashion, have proven very useful. Particularly in the presence of strong local correlations, a local approach to the problem, combining a powerful method for the short ranged interactions with the lattice propagation part of the dynamics, determines the quality of results to a large extent. For a considerable time the non crossing approximation (NCA) in direct perturbation theory, an approach originally developed by Keiter for the Anderson impurity model, built a standard for the description of the local dynamics of interacting electrons. In the last couple of years exact methods like the numerical renormalization group (NRG) as pioneered by Wilson, have surpassed this approximation as regarding the description of the low energy regime. We present an improved approximation level of direct perturbation theory for finite Coulomb repulsion U, the crossing approximation one (CA1) and discuss its connections with other generalizations of NCA. CA1 incorporates all processes up to fourth order in the hybridization strength V in a self-consistent skeleton expansion, retaining the full energy dependence of the vertex functions. We reconstruct the local approach to the lattice problem from the point of view of cumulant perturbation theory in a very general way and discuss the proper use of impurity solvers for this purpose. Their reliability can be tested in applications to e.g. the Hubbard model and the Anderson-lattice model. We point out shortcomings of existing impurity solvers and improvements gained with CA1 in this context. This paper is dedicated to the memory of Hellmut Keiter.Comment: 45 pages, 22 figure

    Diversidad de especies de Xanthoparmelia (Parmeliaceae) en la vegetación de matorrales xerofíticos mexicanos, evidenciada por datos moleculares, morfológicos y químicos

    Get PDF
    The genus Xanthoparmelia is the largest genus of lichen- forming fungi with about 800 species worldwide. Xanthoparmelia is also common in the deserts of central Mexico, but only a few molecular studies exist on its species’ diversity in this region. In this study, we sampled 38 Xanthoparmelia species from around the world including species from the xerophytic scrubs of central Mexico to assess the diversity using an integrative approach. Molecular phylogenetic analyses were performed using a combination of the ITS, mtSSU and nuLSU genetic markers. We evaluated our phylogenetic results in a context of traditional morphological and chemical characters. The combined evidence of molecular, morphological, and chemical data identified a total of 18 Xanthoparmelia species-level lineages occurring in central Mexico. However, numerous traditionally circumscribed species did not form monophyletic groups in the molecular phylogenetic reconstructions. This conflict indicates that taxonomy and species delimitation in the genus Xanthoparmelia requires revision and emphasizes the importance of molecular evidence for more robust species delimitations in this genus.Xanthoparmelia es el género más grande de hongos liquenizados, con alrededor de 800 especies en todo el mundo. Xanthoparmelia es común en los desiertos del centro de México, pero existen pocos estudios moleculares sobre la diversidad de especies en esta región. En este estudio, muestreamos 38 especies de Xanthoparmelia de diferentes partes del mundo, incluidas especies de los matorrales xerófilos del centro de México, para evaluar la diversidad usando una aproximación integrativa. Los análisis filogenéticos moleculares se realizaron combinando los marcadores genéticos ITS, mtSSU y nuLSU. Además, evaluamos nuestros resultados filogenéticos en un contexto de caracteres morfológicos y químicos usados en la taxonomía tradicional. Teniendo en cuenta las evidencias obtenidas a partir de caracteres moleculares, morfológicos y químicos se identificaron un total de 18 linajes de Xanthoparmelia con categoría de especie que aparecen en el centro de México. Sin embargo, muchas especies tradicionalmente circunscritas no formaron grupos monofiléticos. Este conflicto indica que la taxonomía y delimitación de especies en el género Xanthoparmelia requiere revisión y enfatiza la importancia de los datos moleculares para una delimitación más robusta de especies en este género

    Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties

    Full text link
    The electrodynamic properties of Ba(Fe0.92_{0.92}Co0.08)2_{0.08})_2As2_{2} and Ba(Fe0.95_{0.95}Ni0.05)As_{0.05})_As_{2}singlecrystalshavebeeninvestigatedbyreflectivitymeasurementsinawidefrequencyrange.Inthemetallicstate,theopticalconductivityconsistsofabroadincoherentbackgroundandanarrowDrude−likecomponentwhichdeterminesthetransportproperties;onlythelattercontributionstronglydependsonthecompositionandtemperature.Thissubsystemrevealsa single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivity consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a T^2behaviorinthedcresistivityandscatteringratedisclosingahiddenFermi−liquidbehaviorinthe122iron−pnictidefamily.AnextendedDrudeanalysisyieldsthefrequencydependenceoftheeffectivemass(with behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with m^*/m_b\approx 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.Comment: 13 pages, 9 figure

    Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors

    Full text link
    We investigate the combined effect of Hund's and spin-orbit (SO) coupling on superconductivity in multi-orbital systems. Hund's interaction leads to orbital-singlet spin-triplet superconductivity, where the Cooper pair wave function is antisymmetric under the exchange of two orbitals. We identify three d-vectors describing even-parity orbital-singlet spin-triplet pairings among t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each other. SO coupling further assists pair formation, pins the orientation of the d-vector triad, and induces spin-singlet pairings with a relative phase difference of \pi/2. In the band basis the pseudospin d-vectors are aligned along the z-axis and correspond to momentum-dependent inter- and intra-band pairings. We discuss quasiparticle dispersion, magnetic response, collective modes, and experimental consequences in light of the superconductor Sr2RuO4.Comment: 6 pages, 5 figure

    Optical and transport properties of heavy fermions: theory compared to experiment

    Full text link
    Employing a local moment approach to the periodic Anderson model within the framework of dynamical mean-field theory, direct comparison is made between theory and experiment for the dc transport and optical conductivities of paramagnetic heavy fermion and intermediate valence metals. Four materials, exhibiting a diverse range of behaviour in their transport/optics, are analysed in detail: CeB6, YbAl3, CeAl3 and CeCoIn5. Good agreement between theory and experiment is in general found, even quantitatively, and a mutually consistent picture of transport and optics results.Comment: 21 pages, 10 figures; Replacement with minor style changes made to avoid postscript file error

    Anomalous Normal-State Properties of High-Tc_c Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?

    Full text link
    A systematic study of optical and transport properties of the Hubbard model, based on Metzner and Vollhardt's dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one), and also compare qualitatively with many anomalous transport features of the high-Tc_c cuprates. This anomalous behavior of the normal-state properties is traced to a ``collective single-band Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in Physic
    • …
    corecore