1,528 research outputs found
Adaptive optimization for OpenCL programs on embedded heterogeneous systems
Heterogeneous multi-core architectures consisting of CPUs and GPUs are commonplace in today’s embedded systems. These architectures offer potential for energy efficient computing if the application task is mapped to the right core. Realizing such potential is challenging due to the complex and evolving nature of hardware and applications. This paper presents an automatic approach to map OpenCL kernels onto heterogeneous multi-cores for a given optimization criterion – whether it is faster runtime, lower energy consumption or a trade-off between them. This is achieved by developing a machine learning based approach to predict which processor to use to run the OpenCL kernel and the host program, and at what frequency the processor should operate. Instead of hand-tuning a model for each optimization metric, we use machine learning to develop a unified framework that first automatically learns the optimization heuristic for each metric off-line, then uses the learned knowledge to schedule OpenCL kernels at runtime based on code and runtime information of the program. We apply our approach to a set of representative OpenCL benchmarks and evaluate it on an ARM big.LITTLE mobile platform. Our approach achieves over 93% of the performance delivered by a perfect predictor.We obtain, on average, 1.2x, 1.6x, and 1.8x improvement respectively for runtime, energy consumption and the energy delay product when compared to a comparative heterogeneous-aware OpenCL task mapping scheme
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties
We present results on thermodynamic quantities, resistivity and optical
conductivity for the Hubbard model on a simple hypercubic lattice in infinite
dimensions. Our results for the paramagnetic phase display the features
expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of
heavy fermion systems. The calculations were performed using an approximate
solution to the single-impurity Anderson model, which is the key quantity
entering the solution of the Hubbard model in this limit. To establish the
quality of this approximation we compare its results, together with those
obtained from two other widely used methods, to essentially exact quantum Monte
Carlo results.Comment: 29 pages, 16 figure
Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model.
Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties
The electrodynamic properties of Ba(FeCoAs and
Ba(FeNi_{2}T^2m^*/m_b\approx 5$ in the static limit) and scattering rate that does not
disclose a simple power law. The spectral weight shifts to lower energies upon
cooling; a significant fraction is not recovered within the infrared range of
frequencies.Comment: 13 pages, 9 figure
Anomalous Normal-State Properties of High-T Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?
A systematic study of optical and transport properties of the Hubbard model,
based on Metzner and Vollhardt's dynamical mean-field approximation, is
reviewed. This model shows interesting anomalous properties that are, in our
opinion, ubiquitous to single-band strongly correlated systems (for all spatial
dimensions greater than one), and also compare qualitatively with many
anomalous transport features of the high-T cuprates. This anomalous
behavior of the normal-state properties is traced to a ``collective single-band
Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as
the temperature is lowered, ultimately yielding a strongly renormalized Fermi
liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in
Physic
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Coexistence of magnetism and superconductivity in CeRh1-xIrxIn5
We report a thermodynamic and transport study of the phase diagram of
CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3
< x < 1, including a substantial range of concentration (0.3 < x <0.6) over
which it coexists with magnetic order (which is observed for 0 < x < 0.6). The
anomalous transition to zero resistance that is observed in CeIrIn5 is robust
against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is
more than double that of CeIrIn5, whereas the zero-resistance transition
temperature is relatively unchanged for 0.5 < x < 1
Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory
The question of Fermi liquid vs. non-Fermi liquid behavior induced by strong
correlations is one of the prominent problems in metallic local moment systems.
As standard models for such systems, the SU(N)xSU(M) Anderson impurity models
exhibit both Fermi liquid and non-Fermi liquid behavior, depending on their
symmetry. Taking the Anderson model as an example, these lectures first give an
introduction to the auxiliary boson method to describe correlated systems
governed by a strong, short-range electronic repulsion. It is then shown how to
include the relevant low-lying excitations (coherent spin flip and charge
fluctuation processes), while preserving the local gauge symmetry of the model.
This amounts to a conserving T-matrix approximation (CTMA). We prove a
cancellation theorem showing that the CTMA incorporates all leading and
subleading infrared singularities at any given order in a self-consistent loop
expansion of the free energy. As a result, the CTMA recovers the correct
infrared behavior of the auxiliary particle propagators, indicating that it
correctly describes both the Fermi and the non-Fermi regimes of the Anderson
model.Comment: 37 pages, LaTeX, style file included, 10 postscript figures; to
appear in Proceedings of the XXXVIII Cracow School of Theoretical Physics,
Zakopane, Poland, June 1-10, 199
- …
