669 research outputs found

    Simulation of Stratospheric Water Vapor Trends: Impact on Stratospheric Ozone Chemistry

    Get PDF
    A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM) ECHAM4.L39(DLR)/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39- (DLR)/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOxfamily also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run can be explained by the modeled water vapor increase, but the simulated tropical ozone decrease after volcanic eruptions is caused dynamically rather than chemically

    A strategy for climate evaluation of aircraft technology: an efficient climate impact assessment tool ? AirClim

    No full text
    International audienceClimate change is a challenge to society and to cope with requires assessment tools which are suitable to evaluate new technology options with respect to their impact on climate. Here we present AirClim, a model which comprises a linearisation of the processes occurring from the emission to an estimate in near surface temperature change, which is presumed to be a reasonable indicator for climate change. The model is designed to be applicable to aircraft technology, i.e.~the climate agents CO2, H2O, CH4 and O3 (latter two resulting from NOx-emissions) and contrails are taken into account. It employs a number of precalculated atmospheric data and combines them with aircraft emission data to obtain the temporal evolution of atmospheric concentration changes, radiative forcing and temperature changes. The linearisation is based on precalculated data derived from 25 steady-state simulations of the state-of-the-art climate-chemistry model E39/C, which include sustained normalised emissions at various atmospheric regions. The results show that strongest climate impacts from ozone changes occur for emissions in the tropical upper troposphere (60 mW/m²; 80 mK for 1 TgN emitted), whereas from methane in the middle tropical troposphere (?2.7% change in methane lifetime; ?30 mK per TgN). The estimate of the temperature changes caused by the individual climate agents takes into account a perturbation lifetime, related to the region of emission. A comparison of this approach with results from the TRADEOFF and SCENIC projects shows reasonable agreement with respect to concentration changes, radiative forcing, and temperature changes. The total impact of a supersonic fleet on radiative forcing (mainly water vapour) is reproduced within 5%. For subsonic air traffic (sustained emissions after 2050) results show that although ozone-radiative forcing is much less important than that from CO2 for the year 2100. However the impact on temperature is of comparable size even when taking into account temperature decreases from CH4. That implies that all future measures for climate stabilisation should concentrate on both CO2 and NOx emissions. A direct comparison of super- with subsonic aircraft (250 passengers, 5400 nm) reveals a 5 times higher climate impact of supersonics

    TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone

    Get PDF
    Road traffic emits not only carbon dioxide (CO2) and particulate matter, but also other pollutants such as nitrogen oxides (NOx), volatile organic compounds (VOCs) and carbon monoxide (CO). These chemical species influence the atmospheric chemistry and produce ozone (O3) in the troposphere. Ozone acts as a greenhouse gas and thus contributes to anthropogenic global warming. Technological trends and political decisions can help to reduce the O3 effect of road traffic emissions on climate. In order to assess the O3 response of such mitigation options on climate, we developed a chemistry–climate response model called TransClim (Modelling the effect of surface Transportation on Climate). The current version considers road traffic emissions of NOx, VOC and CO and determines the O3 change and its corresponding stratosphere-adjusted radiative forcing. Using a tagging method, TransClim is further able to quantify the contribution of road traffic emissions to the O3 concentration. Thus, TransClim determines the contribution to O3 as well as the change in total tropospheric O3 of a road traffic emission scenario. Both quantities are essential when assessing mitigation strategies. The response model is based on lookup tables which are generated by a set of emission variation simulations performed with the global chemistry–climate model EMAC (ECHAM5 v5.3.02, MESSy v2.53.0). Evaluating TransClim against independent EMAC simulations reveals low deviations of all considered species (0.01 %–10 %). Hence, TransClim is able to reproduce the results of an EMAC simulation very well. Moreover, TransClim is about 6000 times faster in computing the climate effect of an emission scenario than the complex chemistry–climate model. This makes TransClim a suitable tool to efficiently assess the climate effect of a broad range of mitigation options for road traffic or to analyse uncertainty ranges by employing Monte Carlo simulations.</p

    Climatologies of streamer events derived from a transport model and a coupled chemistry-climate model

    No full text
    International audienceStreamers, i.e. finger-like structures, reach from lower into extra-tropical latitudes. They can be detected in N2O or O3 distributions on single lower stratospheric layers in mid-latitudes since they are characterised by high N2O or low O3 values compared to undisturbed mid-latitude values. If irreversible mixing occurs, streamer events significantly contribute to the transfer of tropical air masses to mid-latitudes which is also an exchange of upper tropospheric and stratospheric air. A climatology of streamer events has been established, employing the chemical-transport model KASIMA, which is driven by ECMWF re-analyses (ERA) and operational analyses. For the first time, the seasonal and the geographical distribution of streamer frequencies has been determined on the basis of 9 years of observations. For the current investigation, a meridional gradient criterion has been newly formulated and applied to the N2O distributions calculated with KASIMA. The climatology has been derived by counting all streamer events between 21 and 25 km for the years 1990 to 1998. It has been further used for the validation of a streamer climatology which has been established in the same way employing data of a multi-year simulation with the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (E39/C). It turned out that both climatologies are qualitatively in fair agreement, in particular in the northern hemisphere, where much higher streamer frequencies are found in winter than in summer. In the southern hemisphere, KASIMA analyses indicate strongest streamer activity in September. E39/C streamer frequencies clearly offers an offset from June to October, pointing to model deficiencies with respect to tropospheric dynamics. KASIMA and E39/C results fairly agree from November to May. Some of the findings give strong indications that the streamer events found in the altitude region between 21 and 25 km are mainly forced from the troposphere and are not directly related to the dynamics of the stratosphere, in particular not to the dynamics of the polar vortex. Sensitivity simulations with E39/C, which represent recent and possible future atmospheric conditions, have been employed to answer the question how climate change would alter streamer frequencies. It is shown that the seasonal cycle does not change but that significant changes occur in months of minimum and maximum streamer frequencies. This could have an impact on mid-latitude distribution of chemical tracers and compounds. The influence of streamers on the mid-latitude ozone budget has been assessed by applying a special E39/C model configuration. The streamer transport of low ozone is simply inhibited by filling up its ozone content according to the surrounding air masses. It shows that the importance of streamers for the ozone budget strongly decreases with altitude. At 15 km streamers lead to a decrease of ozone by 80%, whereas around 25 km it is only 1 to 5% and at mid-latitude tropopause, ozone decreases by 30% (summer) to 50% (winter)

    Conserving approximations in direct perturbation theory: new semianalytical impurity solvers and their application to general lattice problems

    Full text link
    For the treatment of interacting electrons in crystal lattices approximations based on the picture of effective sites, coupled in a self-consistent fashion, have proven very useful. Particularly in the presence of strong local correlations, a local approach to the problem, combining a powerful method for the short ranged interactions with the lattice propagation part of the dynamics, determines the quality of results to a large extent. For a considerable time the non crossing approximation (NCA) in direct perturbation theory, an approach originally developed by Keiter for the Anderson impurity model, built a standard for the description of the local dynamics of interacting electrons. In the last couple of years exact methods like the numerical renormalization group (NRG) as pioneered by Wilson, have surpassed this approximation as regarding the description of the low energy regime. We present an improved approximation level of direct perturbation theory for finite Coulomb repulsion U, the crossing approximation one (CA1) and discuss its connections with other generalizations of NCA. CA1 incorporates all processes up to fourth order in the hybridization strength V in a self-consistent skeleton expansion, retaining the full energy dependence of the vertex functions. We reconstruct the local approach to the lattice problem from the point of view of cumulant perturbation theory in a very general way and discuss the proper use of impurity solvers for this purpose. Their reliability can be tested in applications to e.g. the Hubbard model and the Anderson-lattice model. We point out shortcomings of existing impurity solvers and improvements gained with CA1 in this context. This paper is dedicated to the memory of Hellmut Keiter.Comment: 45 pages, 22 figure

    Attribution of ozone changes to dynamical and chemical processes in CCMs and CTMs

    Get PDF
    Chemistry-climate models (CCMs) are commonly used to simulate the past and future development of Earth's ozone layer. The fully coupled chemistry schemes calculate the chemical production and destruction of ozone interactively and ozone is transported by the simulated atmospheric flow. Due to the complexity of the processes acting on ozone it is not straightforward to disentangle the influence of individual processes on the temporal development of ozone concentrations. A method is introduced here that quantifies the influence of chemistry and transport on ozone concentration changes and that is easily implemented in CCMs and chemistry-transport models (CTMs). In this method, ozone tendencies (i.e. the time rate of change of ozone) are partitioned into a contribution from ozone production and destruction (chemistry) and a contribution from transport of ozone (dynamics). The influence of transport on ozone in a specific region is further divided into export of ozone out of that region and import of ozone from elsewhere into that region. For this purpose, a diagnostic is used that disaggregates the ozone mixing ratio field into 9 separate fields according to in which of 9 predefined regions of the atmosphere the ozone originated. With this diagnostic the ozone mass fluxes between these regions are obtained. Furthermore, this method is used here to attribute long-term changes in ozone to chemistry and transport. The relative change in ozone from one period to another that is due to changes in production or destruction rates, or due to changes in import or export of ozone, are quantified. As such, the diagnostics introduced here can be used to attribute changes in ozone on monthly, interannual and long-term time-scales to the responsible mechanisms. Results from a CCM simulation are shown here as examples, with the main focus of the paper being on introducing the method

    Climate sensitivity of radiative impacts from transport systems

    Get PDF
    Comparing individual components of a total climate impact is traditionally done in terms of radiative forcing. However, the climate impact of transport systems includes contributions that are likely to imply climate sensitivity parameters distinctly different from the “reference value” for a homogeneous CO2 perturbation. We propose to introduce efficacy factors for each component into the assessment. The way of proceeding is illustrated using aviation as an example, and prospects for evaluating the other transport system in the EU project QUANTIFY are given

    "Exhaustion" Physics in the Periodic Anderson Model using Iterated Perturbation Theory

    Get PDF
    We discuss the "exhaustion" problem in the context of the Periodic Anderson Model using Iterated Perturbation Theory(IPT) within the Dynamical Mean Field Theory. We find that, despite its limitations, IPT captures the exhaustion physics, which manifests itself as a dramatic, strongly energy dependent suppression of the effective Anderson impurity problem. As a consequence, low energy scales in the lattice case are strongly suppressed compared to the "Kondo scale" in the single-impurity picture. The IPT results are in qualitative agreement with recent Quantum Monte Carlo results for the same problem.Comment: 13 preprint pages including 1 table and 4 eps figures, replaced by revised version, accepted for publication in Europhysics Letters, added references and conten

    The ACCENT-protocol: a framework for benchmarking and model evaluation

    Get PDF
    We summarise results from a workshop on “Model Benchmarking and Quality Assurance” of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure of how to perform a model evaluation. This includes eight steps and examples from global model applications which are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define “benchmarking” as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.publishe

    Anomalous Normal-State Properties of High-Tc_c Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?

    Full text link
    A systematic study of optical and transport properties of the Hubbard model, based on Metzner and Vollhardt's dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one), and also compare qualitatively with many anomalous transport features of the high-Tc_c cuprates. This anomalous behavior of the normal-state properties is traced to a ``collective single-band Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in Physic
    corecore