3 research outputs found

    Classification of the global Sentinel-1 SAR vignettes for ocean surface process studies

    No full text
    International audienceSpaceborne synthetic aperture radar (SAR) can provide finely-resolved (meters-scale) images of ocean surface roughness day-or-night in nearly all weather conditions. This makes it a unique asset for many geophysical applications. Initially designed for the measurement of directional ocean wave spectra, Sentinel-1 SAR wave mode (WV) vignettes are small 20 km scenes that have been collected globally since 2014. Recent WV data exploration reveals that many important oceanic and atmospheric phenomena are also well captured, but not yet employed by the scientific community. However, expanding applications of this whole massive dataset beyond ocean waves requires a strategy to automatically identify these geophysical phenomena. In this study, we propose to apply the emerging deep learning approach in ocean SAR scenes classification. The training is performed using a hand-curated dataset that describes ten commonly-occurring atmospheric or oceanic processes. Our model evaluation relies on an independent assessment dataset and shows satisfactory and robust classification results. To further illustrate the model performance, regional patterns of rain and sea ice are qualitatively analyzed and found to be very consistent with independent remote sensing datasets. In addition, these high-resolution WV SAR data can resolve fine, sub-km scale, spatial structure of rain events and sea ice that complement other satellite measurements. Overall, such automated SAR vignettes classification may open paths for broader geophysical application of maritime Sentinel-1 acquisitions

    New observations from the SWIM radar on board CFOSAT: instrument validation and ocean wave measurement assessment

    No full text
    International audienceThis paper describes first results obtained from the SWIM (Surface Waves Investigation and Monitoring) instrument carried by CFOSAT (China France Oceanography Satellite), which was launched on October 29th, 2018. SWIM is a Ku-Band radar with a near-nadir scanning beam geometry. It was designed to measure the spectral properties of surface ocean waves. First, the good behavior of the instrument is illustrated. It is then shown that the nadir products (significant wave height, normalized radar cross-section and wind speed) exhibit an accuracy similar to standard altimeter missions, thanks to a new retracking algorithm, which compensates a lower sampling rate compared to standard altimetry missions. The off-nadir beam observations are analyzed in details. The normalized radar cross-section varies with incidence and wind speed as expected from previous studies presented in the literature. We illustrate that, in order to retrieve the wave spectra from the radar backscattering fluctuations, it is crucial to apply a speckle correction derived from the observations. Directional spectra of ocean waves and their mean parameters are then compared to wave model data at the global scale and to in situ data from a selection of case studies. The good efficiency of SWIM to provide the spectral properties of ocean waves in the wavelength range [70m-500m] is illustrated. The main limitations are discussed, and the perspectives to improve data quality are presented
    corecore