101 research outputs found

    Linac4 DTL Prototype: Theoretical Model, Simulation and Low Energy Measurements

    Get PDF
    A one meter long hot prototype of the LINAC4 DTL, built in a collaboration with INFN Legnaro, was delivered to CERN in 2008. It was then copper plated at CERN is and is presently prepared for high-power testing at the CERN test stand in SM18. In this paper we present 2D/3D simulations and the first RF low-power measurements to verify the electromagnetic properties of the cavity and to tune it before the high-power RF tests. In particular, the influence of the post couplers was studied in order to guarantee stabilization of the accelerating field during operation. We present an equivalent circuit model of the DTL, together with a comparison of 3D simulations and measurement results for the hot model

    Compact RF accelerators for nuclear waste characterization

    Get PDF
    Part of the management of radioactive waste produced by industrial, research or medical processes passes through their characterization with nuclear techniques using neutron sources (typically a D-T tube produces 106 n/pulse, 10 us 100 Hz). On the basis of what has been developed by INFN for other applications (IFMIF, ESS, BNCT...) it is possible to build a much more intense neutron source (109 n/pulse), based on a relatively compact 5 MeV RF linear accelerator and a thick beryllium target, exploiting 9Be(p,n)9B. This talk will recall what was discussed between SOGIN and INFN in recent years (MUNES project) in the light of the most recent results obtained by INFN in the field of linear accelerators

    NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities

    Get PDF
    Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% \ub1 18 PAX6 positive cells) and neurons (38% \ub1 8 \u3b2IIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% \ub1 1 \u3b2IIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications

    The protein LJM 111 from Lutzomyia longipalpis Salivary Gland Extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model

    Get PDF
    Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-alpha and IFN-gamma released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry. TNF-alpha and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-alpha and IFN-gamma. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-alpha whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils. (C) 2012 Elsevier B.V. All rights reserved

    Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses

    Get PDF
    Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission

    Clinical features and natural history of the first 2073 suspected COVID-19 cases in the Corona São Caetano primary care programme: a prospective cohort study.

    Get PDF
    BACKGROUND: Despite most cases not requiring hospital care, there are limited community-based clinical data on COVID-19. METHODS: The Corona São Caetano programme is a primary care initiative providing care to all residents with COVID-19 in São Caetano do Sul, Brazil. It was designed to capture standardised clinical data on community COVID-19 cases. After triage of potentially severe cases, consecutive patients presenting to a multimedia screening platform between 13 April and 13 May 2020 were tested at home with SARS-CoV-2 reverse transcriptase (RT) PCR; positive patients were followed up for 14 days with phone calls every 2 days. RT-PCR-negative patients were offered additional SARS-CoV-2 serology testing to establish their infection status. We describe the clinical, virological and natural history features of this prospective population-based cohort. FINDINGS: Of 2073 suspected COVID-19 cases, 1583 (76.4%) were tested by RT-PCR, of whom 444 (28.0%, 95% CI 25.9 to 30.3) were positive; 604/1136 (53%) RT-PCR-negative patients underwent serology, of whom 52 (8.6%) tested SARS-CoV-2 seropositive. The most common symptoms of confirmed COVID-19 were cough, fatigue, myalgia and headache; whereas self-reported fever (OR 3.0, 95% CI 2.4 to 3.9), anosmia (OR 3.3, 95% CI 2.6 to 4.4) and ageusia (OR 2.9, 95% CI 2.3 to 3.8) were most strongly associated with a positive COVID-19 diagnosis by RT-PCR or serology. RT-PCR cycle thresholds were lower in men, older patients, those with fever and arthralgia and closer to symptom onset. The rates of hospitalisation and death among 444 RT-PCR-positive cases were 6.7% and 0.7%, respectively, with older age and obesity more frequent in the hospitalised group. CONCLUSION: COVID-19 presents in a similar way to other mild community-acquired respiratory diseases, but the presence of fever, anosmia and ageusia can assist the specific diagnosis. Most patients recovered without requiring hospitalisation with a low fatality rate compared with other hospital-based studies

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    I Diretrizes do Grupo de Estudos em Cardiogeriatria da Sociedade Brasileira de Cardiologia

    Get PDF
    O idoso apresenta características próprias na manifestação das doenças, na resposta à terapêutica e no efeito colateral dos medicamentos. Constitui um grupo de maior risco para o aparecimento das doenças degenerativas, em geral, e cardiovasculares, em particular, além de apresentar maior número de comorbidades
    • …
    corecore