4 research outputs found

    A Feedback Inclusive Neuromuscular Training Program Alters Frontal Plane Kinematics

    Get PDF
    -Anterior cruciate ligament (ACL) neuromuscular training programs have demonstrated beneficial effects in reducing ACL injuries, yet further evaluation of their effects on biomechanical measures across a sports team season is required to elucidate the specific factors that are modifiable. The purpose of this study was to evaluate the effects of a 10-week off-season neuromuscular training program on lower extremity kinematics. Twelve Division I female soccer players (age: 19.2 ± 0.8 years, height: 1.67 ± 0.1 m, weight: 60.2 ± 6.5 kg) performed unanticipated dynamic trials of a running stop-jump task pretraining and posttraining. Data collection was performed using an 8-camera Vicon system (Los Angeles, CA, USA) and 2 Bertec (Columbus, OH, USA) force plates. The 10-week training program consisted of resistance training 2 times per week and field training, consisting of plyometric, agility, and speed drills, 2 times per week. Repeated measures analyses of variance (ANOVAs) were used to assess the differences between pretraining and posttraining kinetics and kinematics of the hip, knee, and ankle at initial contact (IC), peak knee flexion (PKF), and peak stance. Repeated measures ANOVAs were also used to assess isometric strength differences pretraining and posttraining. The alpha level was set at 0.05 a priori. The training program demonstrated significant increases in left hip extension, left and right hip flexion, and right hip adduction isometric strength. At IC, knee abduction angle moved from an abducted to an adducted position (-1.48 ± 3.65 degrees to 1.46 ± 3.86 degrees, p = 0.007), and hip abduction angle increased (-6.05 +/- 4.63 degrees to -10.34 ± 6.83 degrees, p = 0.007). Hip abduction angle at PKF increased (-2.23 ± 3.40 degrees to 6.01 ± 3.82 degrees, p = 0.002). The maximum knee extension moment achieved at peak stance increased from pretraining to posttraining (2.02 ± 0.32 to 2.38 ± 0.75 N.m.kg-1, p = 0.027). The neuromuscular training program demonstrated a potential positive effect in altering mechanics that influence the risk of incurring an ACL injury

    Effects of Drop Height on Drop Jump Performance

    No full text
    Background: Drop jumps (DJ) are commonly implemented in plyometric training programs in an attempt to enhance jump performance. However, it is unknown how different drop heights (DH) affect reactive strength index (RSI), jump height (JH) and ground contact time (GCT). Objectives: The purpose of this study was to assess the effect of various DHs on RSI, JH, and GCT. Methods: Twenty volunteers with a history of plyometric training (Males = 13, Females = 7; age: 22.80 ± 2.69 yr, height: 175.65 ± 11.81 cm, mass: 78.32 ± 13.50 kg) performed DJs from 30 cm (DJ30), 45 cm (DJ45), 60 cm (DJ60), 76 cm (DJ76), and 91 cm (DJ91) and a countermovement jump (0 cm). A 16-camera Vicon system was used to track reflective markers to calculate JH; a Kistler force plate was used to record GCT. RSI was calculated by dividing JH by GCT. RSI and GCT were compared using a 2x5 (sex x DH) mixed factor repeated measures ANOVA, while JH was compared using a 2x6 (sex x DH) repeated measures ANOVA. Results: There were no interactions, but there was a main effect for sex for both JH (M>F) and GCT (F>M). JH demonstrated no main effect for DH: DJ30 (0.49 ± 0.11 m), DJ45 (0.50 ± 0.11 m), DJ60 (0.49 ± 0.12 m), DJ76 (0.50 ± 0.11 m), and DJ91 (0.48 ± 0.12 m). However, GCT showed a main effect where DJ30 (0.36 ± 0.10 s), DJ45 (0.36 ± 0.12 s), and DJ60 (0.37 ± 0.10 s) were not significantly different but were less than DJ76 (0.40 ± 0.12 s) and DJ91 (0.42 ± 0.12 s). Conclusions: Increasing DH beyond 60 cm increased GCT but did not affect JH, resulting in decreased RSI. Therefore, practitioners designing plyometric training programs that implement DJs may utilize DHs up to 60 cm, thereby minimizing GCT without compromising JH
    corecore