16 research outputs found

    Factors influencing submerged macrophyte presence in fresh and brackish eutrophic waters and their impact on carbon emissions

    Get PDF
    In agricultural landscapes of North-Western Europe, the majority of water bodies do not meet the targets set by the European Water Framework Directive due to a lack of submerged macrophytes and associated biodiversity. These eutrophic waters can also be a substantial source of methane (CH4) and carbon dioxide (CO2) to the atmosphere. Here we present a two-year field experiment on the island of Goeree-Overflakkee (southwest Netherlands), conducted in six drainage ditches varying in salinity, where we monitored four permanent plots per ditch and varied the presence of both fish and macrophytes. We aimed to: 1) investigate factors limiting submerged macrophyte growth, focussing on exclusion of grazing pressure and bioturbation by fish; and 2) quantify the CO2 and CH4 emission under these conditions. Even in highly eutrophic, semi turbid ditches with fluctuating salinity levels and sulphide presence in the root zone, submerged macrophytes established successfully after introduction when the influence of grazing and bioturbation by fish was excluded. In the exclosures, diffusive CH4 and CO2 emissions, but not ebullitive CH4 emissions were significantly reduced. The spontaneous development of submerged macrophytes in the exclosures without macrophyte introduction underlined the effect of grazing and bioturbation by fish and suggest that abiotic conditions did not hamper submerged macrophyte development. Our results provide important insights into the influential factors for submerged macrophyte development and potential for future management practices. Large-scale fish removal may stimulate submerged macrophyte growth and reduce methane emissions, albeit that the macrophyte diversity will likely stay low in our study region due to fluctuating salinity and eutrophic conditions.</p

    European Respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia.

    Get PDF
    This document provides recommendations for monitoring and treatment of children in whom bronchopulmonary dysplasia (BPD) has been established and who have been discharged from the hospital, or who were >36 weeks of postmenstrual age. The guideline was based on predefined Population, Intervention, Comparison and Outcomes (PICO) questions relevant for clinical care, a systematic review of the literature and assessment of the evidence using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. After considering the balance of desirable (benefits) and undesirable (burden, adverse effects) consequences of the intervention, the certainty of the evidence, and values, the task force made conditional recommendations for monitoring and treatment of BPD based on very low to low quality of evidence. We suggest monitoring with lung imaging using ionising radiation in a subgroup only, for example severe BPD or recurrent hospitalisations, and monitoring with lung function in all children. We suggest to give individual advice to parents regarding daycare attendance. With regards to treatment, we suggest the use of bronchodilators in a subgroup only, for example asthma-like symptoms, or reversibility in lung function; no treatment with inhaled or systemic corticosteroids; natural weaning of diuretics by the relative decrease in dose with increasing weight gain if diuretics are started in the neonatal period; and treatment with supplemental oxygen with a saturation target range of 90-95%. A multidisciplinary approach for children with established severe BPD after the neonatal period into adulthood is preferable. These recommendations should be considered until new and urgently needed evidence becomes available

    Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept

    Get PDF
    Developments of future scenarios of Antarctic ecosystems are still in their infancy, whilst predictions of the physical environment are recognized as being of global relevance and corresponding models are under continuous development. However, in the context of environmental change simulations of the future of the Antarctic biosphere are increasingly demanded by decision makers and the public, and are of fundamental scientific interest. This paper briefly reviews existing predictive models applied to Antarctic ecosystems before providing a conceptual framework for the further development of spatially and temporally explicit ecosystem models. The concept suggests how to improve approaches to relating species’ habitat description to the physical environment, for which a case study on sea urchins is presented. In addition, the concept integrates existing and new ideas to consider dynamic components, particularly information on the natural history of key species, from physiological experiments and biomolecular analyses. Thereby, we identify and critically discuss gaps in knowledge and methodological limitations. These refer to process understanding of biological complexity, the need for high spatial resolution oceanographic data from the entire water column, and the use of data from biomolecular analyses in support of such ecological approaches. Our goal is to motivate the research community to contribute data and knowledge to a holistic, Antarctic-specific, macroecological framework. Such a framework will facilitate the integration of theoretical and empirical work in Antarctica, improving our mechanistic understanding of this globally influential ecoregion, and supporting actions to secure this biodiversity hotspot and its ecosystem services
    corecore