132 research outputs found

    Precise optical control of gene expression in C elegans using improved genetic code expansion and Cre recombinase.

    Get PDF
    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Kepler-1649b: : An Exo-Venus in the Solar Neighborhood

    Get PDF
    Angelo, et al, 'Kepler-1649b: An Exo-Venus in the Solar Neighborhood', The Astronomical Journal, 153:162 (8pp), 2017 April. The version of record is availalbe online at doi: https://doi.org/10.3847/1538-3881/aa615f. © 2017. The American Astronomical Society. All rights reservedThe Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star's habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of PSF photometry, ground-based spectroscopy and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.Peer reviewedFinal Published versio

    Expanding the Genetic Code of an Animal

    No full text
    Genetic code expansion, for the site-specific incorporation of unnatural amino acids into proteins, is currently limited to cultured cells and unicellular organisms. Here we expand the genetic code of a multicellular animal, the nematode <i>Caenorhabditis elegans</i>

    Report Cell-Nonautonomous Regulation of C. elegans Germ Cell Death by kri-1

    No full text
    Summary Programmed cell death (or apoptosis) is an evolutionarily conserved, genetically controlled suicide mechanism for cells that, when deregulated, can lead to developmental defects, cancers, and degenerative diseases Results and Discussion In an RNA interference (RNAi) screen unrelated to apoptosis, we serendipitously uncovered a cep-1/p53-interacting gene, kri-1, the ortholog of human KRIT1/CCM1, which is frequently mutated in the neurovascular disease cerebral cavernous malformation Given that kri-1 is required to promote germ cell death in response to DNA damage, we were interested to know at which step in the pathway it might be functioning

    Efficient and Rapid <i>C. elegans</i> Transgenesis by Bombardment and Hygromycin B Selection

    Get PDF
    <div><p>We report a simple, cost-effective, scalable and efficient method for creating transgenic <i>Caenorhabditis elegans</i> that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type <i>C. elegans</i> at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for <i>C. elegans</i> transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in <i>C. elegans</i>.</p></div
    corecore