796 research outputs found

    The Greisen Equation Explained and Improved

    Get PDF
    Analytic description of the evolution of cosmic ray showers is dominated by the Greisen equation nearly five decades old. We present an alternative approach with several advantages. Among the new features are a prediction of the differential distribution, replacing Greisen's form which fails to be positive definite. Explicit comparison with Monte Carlo simulations shows excellent agreement after a few radiation lengths of development. We find a clear connection between Monte Carlo adjustment of Greisen's form and underlying physics, and present a concise derivation with all steps explicit. We also reconstruct the steps needed to reproduce Greisen's approximate formula, which appears not to have been published previously.Comment: 8 pages, 7 figures, revised version, accepted for publication in Phys. Rev.

    New physics from ultrahigh energy cosmic rays

    Get PDF
    Cosmic rays from outer space enter the atmosphere with energies of up to 10^{11} GeV. The initial particle or a secondary hadron inside the shower may then interact with an air nucleon to produce nonstandard particles. In this article we study the production of new physics by high energy cosmic rays, focusing on the long-lived gluino of split-SUSY models and a WIMP working as dark matter. We first deduce the total flux of hadron events at any depth in the atmosphere, showing that secondary hadrons can not be neglected. Then we use these results to find the flux of gluinos and WIMPs that reach the ground after being produced inside air showers. We also evaluate the probability of producing these exotic particles in a single proton shower of ultrahigh energy. Finally we discuss the possible signal in current and projected experiments. While the tiny flux of WIMPs does not seem to have any phenomenological consequences, we show that the gluinos could modify substantially the profile of a small fraction of extensive air showers. In particular, they could produce a distinct signal observable at AUGER in showers of large zenith angle.Comment: 9 pages, version to appear in PR

    Cosmic Ray in the Northern Hemisphere: Results from the Telescope Array Experiment

    Full text link
    The Telescope Array (TA) is the largest ultrahigh energy (UHE) cosmic ray observatory in the northern hemisphere TA is a hybrid experiment with a unique combination of fluorescence detectors and a stand-alone surface array of scintillation counters. We will present the spectrum measured by the surface array alone, along with those measured by the fluorescence detectors in monocular, hybrid, and stereo mode. The composition results from stereo TA data will be discussed. Our report will also include results from the search for correlations between the pointing directions of cosmic rays, seen by the TA surface array, with active galactic nuclei.Comment: 8 pages 11 figure, Proceedings of the APS Division of Particle and Fields (DPF) Meeting, Aug 2011, Brown University, Providence, RI, US

    Comment on "Correlation between Compact Radio Lout Quasars and Ultrahigh Energy Cosmic Rays"

    Get PDF
    In a recent paper, Farrar and Biermann argue that there is a strong correlation between the direction of the five highest-energy cosmic-ray events and compact, radio-loud quasars. This Comment shows that this analysis contains several inconsistencies and errors so that the significance of any such correlation is certainly greatly overestimated and perhaps nonexistent.Comment: 2 pages, REVTE

    A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Ray Air Showers

    Full text link
    We have developed a macroscopic description of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays due to the presence of the geo-magnetic field. This description offers a simple and direct insight in the relation between the properties of the air shower and the time-structure of the radio pulse.Comment: 10 pages, 8 figures; submitted to Astroparticle Physic

    Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    We show that there are discrete gauge symmetries protect naturally heavy X particles from decaying into the ordinary light particles in the supersymmetric standard model. This makes the proposal very attractive that the superheavy X particles constitute a part of the dark matter in the present universe. It is more interesting that there are a class of discrete gauge symmetries which naturally accommodate a long-lived unstable X particle. We find that in some discrete Z_{10} models, for example, a superheavy X particle has lifetime \tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14} GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) couple to the X. We briefly discuss a possible explanation for the recently observed ultra-high-energy cosmic ray events by the decay of this unstable X particle.Comment: 9 pages, Late

    Susy QCD and High Energy Cosmic Rays 1. Fragmentation functions of Susy QCD

    Get PDF
    The supersymmetric evolution of the fragmentation functions (or timelike evolution) within N=1 QCDQCD is discussed and predictions for the fragmentation functions of the theory (into final protons) are given. We use a backward running of the supersymmetric DGLAP equations, using a method developed in previous works. We start from the usual QCD parameterizations at low energy and run the DGLAP back, up to an intermediate scale -assumed to be supersymmetric- where we switch-on supersymmetry. From there on we assume the applicability of an N=1 supersymmetric evolution (ESAP). We elaborate on possible application of these results to High Energy Cosmic Rays near the GZK cutoff.Comment: 36 pages, 12 fig

    BL Lacertae are probable sources of the observed ultra-high energy cosmic rays

    Get PDF
    We calculate angular correlation function between ultra-high energy cosmic rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL Lacertae objects. We find significant correlations which correspond to the probability of statistical fluctuation less than 10410^{-4}, including penatly for selecting the subset of brightest BL Lacs. We conclude that some of BL Lacs are sources of the observed UHECR and present a list of most probable candidates.Comment: Replaced with the version accepted for publication in JETP Let

    Possible Signature of Low Scale Gravity in Ultra High Enegry Cosmic Rays

    Full text link
    We show that the existence of low scale gravity at TeV scale could lead to a direct production of photons with energies above 10^22 eV due to annihilation of ultra high energy neutrinos on relic massive neutrinos of the galactic halo. Air showers initialized in the terrestrial atmosphere by these ultra energetic photons could be collected in near future by the new generation of cosmic ray experiments.Comment: 5 pages, 3 figure

    On the Single-Zone Modeling for Optimal Climate Control  of a Real-Sized Livestock Stable System

    Get PDF
    corecore