287 research outputs found

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Oct. 1 - Dec. 31, 1966

    Get PDF
    Interstitial compounds of transition elements prepared for improving oxygen electrode in alkaline hydrox fuel cel

    Interstitial compounds as fuel cell catalysts - Their preparative techniques and electrochemical testing

    Get PDF
    Preparation and electrochemical testing methods for fuel cell catalysts using interstitial compound

    Development of an improved oxygen electrode for use in alkaline H2-O2 fuel cells Quarterly report, Apr. 1 - Jun. 30, 1967

    Get PDF
    Preparation of institial compounds of transition metals for hydrogen oxygen fuel cell cathode

    Electronic Structure of Te and As Covered Si(211)

    Get PDF
    Electronic and atomic structures of the clean, and As and Te covered Si(211) surface are studied using pseudopotential density functional method. The clean surface is found to have (2 X 1) and rebonded (1 X 1) reconstructions as stable surface structures, but no \pi-bonded chain reconstruction. Binding energies of As and Te adatoms at a number of symmetry sites on the ideal and (2 X 1) reconstructed surfaces have been calculated because of their importance in the epitaxial growth of CdTe and other materials on the Si(211) surface. The special symmetry sites on these surfaces having the highest binding energies for isolated As and Te adatoms are identified. But more significantly, several sites are found to be nearly degenerate in binding energy values. This has important consequences for epitaxial growth processes. Optimal structures calculated for 0.5 ML of As and Te coverage reveal that the As adatoms dimerize on the surface while the Te adatoms do not. However, both As and Te covered surfaces are found to be metallic in nature.Comment: 17 pages, 9 figures, accepted for publication in Phys. Rev.

    Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene

    Full text link
    The ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump Terahertz-probe spectroscopy. The conductivity in graphene at Terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination. We report the electron-hole recombination times in epitaxial graphene for the first time. Our results show that carrier cooling occurs on sub-picosecond time scales and that interband recombination times are carrier density dependent.Comment: 4 pages, 5 figure

    Rural Revitalization in New Mexico

    Get PDF
    The Rural Education Bureau of the New Mexico Public Education Department has established a program to address the special needs of schools and communities in the extensive rural areas of the state. High poverty rates, depopulation and a general lack of viable economic opportunity have marked rural New Mexico for decades. The program underway aims at establishing holistic community socioeconomic revitalization at the grass roots level with the schools playing a leading role. Initiatives include community conversations with key leaders to determine necessary steps to take in encouraging economic growth and attracting businesses, the institution of entrepreneurship within the community, the transformation of the school into a community resource and the encouragement of place-based education within schools. In the second year of this program there are 13 school districts actively involved in the enhancement of their schools and community. The program adopted many of the principles for rural revitalization seen in the remote communities of South Australia

    Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport

    Full text link
    A non-equilibrium Green's function method is applied to model high-field quantum transport and electron-phonon resonances in semiconductor superlattices. The field-dependent density of states for elastic (impurity) scattering is found non-perturbatively in an approach which can be applied to both high and low electric fields. I-V curves, and specifically electron-phonon resonances, are calculated by treating the inelastic (LO phonon) scattering perturbatively. Calculations show how strong impurity scattering suppresses the electron-phonon resonance peaks in I-V curves, and their detailed sensitivity to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl

    An isotopic effect in phi photoproduction at a few GeV

    Full text link
    A distinct isotopic effect in phi photoproduction at 2-5 GeV region is identified by examining the production amplitudes due to Pomeron-exchange and meson-exchange mechanisms. This effect is mainly caused by the pi-eta interference constrained by SU(3) symmetry and the isotopic structure of the gamma NN coupling in the direct phi-radiation amplitude. It can be tested experimentally by measuring differences in the polarization observables between the gamma-p and gamma-n reactions.Comment: 11 pages, 6 figure

    Te covered Si(001): a variable surface reconstruction

    Get PDF
    At a given temperature, clean and adatom covered silicon surfaces usually exhibit well-defined reconstruction patterns. Our finite temperature ab-initio molecular dynamics calculations show that the tellurium covered Si(001) surface is an exception. Soft longitudinal modes of surface phonons due to the strongly anharmonic potential of the bridged tellurium atoms prevent the reconstruction structure from attaining any permanent, two dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction have reached conflicting conclusions.Comment: 4 pages, 3 gif figure

    Functional approach to the electromagnetic response function: the Longitudinal Channel

    Get PDF
    In this paper we address the (charge) longitudinal electromagnetic response for a homogeneous system of nucleons interacting via meson exchanges in the functional framework. This approach warrants consistency if the calculation is carried on order-by-order in the mesonic loop expansion with RPA-dressed mesonic propagators. At the 1-loop order and considering pion, rho and omega exchanges we obtain a quenching of the response, in line with the experimental results.Comment: RevTeX, 18 figures available upon request - to be published in Physical Review
    corecore