40 research outputs found

    Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER's Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations

    Get PDF
    In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. (2021) by analyzing a combined dataset from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass-radius estimate of PSR J0030+0451 we find the radius of a 1.4 solar mass neutron star to be constrained to the 95% credible ranges 12.33^{+0.76}_{-0.81} km (PP model) and 12.18^{+0.56}_{-0.79} km (CS model). In addition, we explore different chiral effective field theory calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros.

    No full text
    The t(10;11)(p13;q14) translocation leads to the fusion of the CALM and AF10 genes. This translocation can be found as the sole cytogenetic abnormality in acute lymphoblastic leukemia, acute myeloid leukemia and in malignant lymphomas. The expression of CALM/AF10 in primary murine bone marrow cells results in the development of an aggressive leukemia in a murine bone marrow transplantation model. Using a yeast two-hybrid screen, we identified the lymphoid regulator Ikaros as an AF10 interacting protein. Interestingly, Ikaros is required for normal development of lymphocytes, and aberrant expression of Ikaros has been found in leukemia. In a murine model, the expression of a dominant negative isoform of Ikaros causes leukemias and lymphomas. The Ikaros interaction domain of AF10 was mapped to the leucine zipper domain of AF10, which is required for malignant transformation both by the CALM/AF10 and the MLL/AF10 fusion proteins. The interaction between AF10 and Ikaros was confirmed by GST pull down and co-immunoprecipitation. Coexpression of CALM/AF10 but not of AF10 alters the subcellular localization of Ikaros in murine fibroblasts. The transcriptional repressor activity of Ikaros is reduced by AF10. These results suggest that CALM/AF10 might interfere with normal Ikaros function, and thereby block lymphoid differentiation in CALM/AF10 positive leukemias

    Proteomic identification of the MYST domain histone acetyltransferase TIP60 (HTATIP) as a co-activator of the myeloid transcription factor C/EBPalpha.

    No full text
    The transcription factor C/EBPalpha (CEBPA) is a key player in granulopoiesis and leukemogenesis. We have previously reported the interaction of C/EBPalpha with other proteins (utilizing mass spectrometry) in transcriptional regulation. In the present study, we characterized the association of the MYST domain histone acetyltransferase Tat-interactive protein (TIP) 60 (HTATIP) with C/EBPalpha. We show in pull-down and co-precipitation experiments that C/EBPalpha and HTATIP interact. A chromatin immunoprecipitation (ChIP) and a confirmatory Re-ChIP assay revealed in vivo occupancy of the C/EBPalpha and GCSF-R promoter by HTATIP. Reporter gene assays showed that HTATIP is a co-activator of C/EBPalpha. The co-activator function of HTATIP is dependent on its intact histone acetyltransferase (HAT) domain and on the C/EBPalpha DNA-binding domain. The resulting balance between histone acetylation and deacetylation at the C/EBPalpha promoter might represent an important mechanism of C/EBPalpha action. We observed a lower expression of HTATIP mRNA in undifferentiated U937 cells compared to retinoic acid-induced differentiated U937 cells, and correlated expression of CEBPA and HTATIP mRNA levels were observed in leukemia samples. These findings point to a functional synergism between C/EBPalpha and HTATIP in myeloid differentiation and suggest that HTATIP might be an important player in leukemogenesis

    Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER's Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations

    No full text
    In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass–radius estimate of PSR J0030+0451, we find the radius of a 1.4 M⊙ neutron star to be constrained to the 95% credible ranges 12.33+0.76-0.81 km (PP model) and 12.18+0.56-0.79 km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities

    Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER's Mass-Radius Estimate of PSR J0740+6620 and Multimessenger Observations

    No full text
    In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here we study the additional impact on the EOS from the jointly estimated mass and radius of PSR J0740+6620, presented in Riley et al. by analyzing a combined data set from X-ray telescopes NICER and XMM-Newton. We employ two different high-density EOS parameterizations: a piecewise-polytropic (PP) model and a model based on the speed of sound in a neutron star (CS). At nuclear densities these are connected to microscopic calculations of neutron matter based on chiral effective field theory (EFT) interactions. In addition to the new NICER data for this heavy neutron star, we separately study constraints from the radio timing mass measurement of PSR J0740+6620, the gravitational wave events of binary neutron stars GW190425 and GW170817, and for the latter the associated kilonova AT2017gfo. By combining all these, and the NICER mass–radius estimate of PSR J0030+0451, we find the radius of a 1.4 M⊙ neutron star to be constrained to the 95% credible ranges 12.33+0.76-0.81 km (PP model) and 12.18+0.56-0.79 km (CS model). In addition, we explore different chiral EFT calculations and show that the new NICER results provide tight constraints for the pressure of neutron star matter at around twice saturation density, which shows the power of these observations to constrain dense matter interactions at intermediate densities
    corecore