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ABSTRACT
Understanding the dense matter equation of state at extreme conditions is an important open
problem. Astrophysical observations of neutron stars promise to solve this, with Neutron Star
Interior Composition Explorer poised to make precision measurements of mass and radius for
several stars using the waveform modelling technique. What has been less clear, however, is
how these mass–radius measurements might translate into equation of state constraints and
what are the associated equation of state sensitivities. We use Bayesian inference to explore
and contrast the constraints that would result from different choices for the equation of state
parametrization; comparing the well-established piecewise polytropic parametrization to one
based on physically motivated assumptions for the speed of sound in dense matter. We also
compare the constraints resulting from Bayesian inference to those from simple compatibility
cuts. We find that the choice of equation of state parametrization and particularly its prior
assumptions can have a significant effect on the inferred global mass–radius relation and
the equation of state constraints. Our results point to important sensitivities when inferring
neutron star and dense matter properties. This applies also to inferences from gravitational
wave observations.

Key words: dense matter – equation of state – stars: neutron.

1 IN T RO D U C T I O N

With initial results from the Neutron Star Interior Composition
Explorer (NICER) (Arzoumanian et al. 2014; Gendreau et al. 2016)
mission imminent, X-ray pulsar waveform modelling is poised to
deliver its first precision constraints on the dense matter equation
of state (EOS). Emission from a hotspot such as the hot polar cap
of an X-ray pulsar gives rise to a pulsation in the light emitted
from the star as it rotates. The shape and energy dependence of
the waveform depend on the relativistic gravitational properties of
the star because the light must propagate through the neutron star
space–time; this in turn depends on the EOS of supranuclear density
matter within the neutron star. Given good relativistic ray-tracing
models for rapidly rotating neutron star space-times, it is possible
to perform Bayesian inference of EOS parameters using the pulse
profile data (see Watts et al. 2016, and references therein). The
waveform modelling technique is also central to plans to put even
tighter constraints on the dense matter EOS with the next generation

� E-mail: sgreif@theorie.ikp.physik.tu-darmstadt.de (SKG);
g.raaijmakers@uva.nl (GR)
† Joint lead authors

of large-area X-ray telescopes. Two such concepts, the enhanced
X-ray Timing and Polarimetry mission (Watts et al. 2019; Zhang
et al. 2019) and the Spectroscopic Time-Resolving Observatory
for Broadband Energy X-rays (STROBE-X; Ray et al. 2018), are
currently in development.

One interesting question that arises is how to parametrize the
EOS. The form of the parametrization chosen has consequences
for how one does the inference (Raaijmakers, Riley & Watts 2018;
Riley, Raaijmakers & Watts 2018) and one must also consider which
parametrizations deliver most information about the microphysics
of the particle interactions that are the ultimate goal. One very well-
established model is the piecewise polytropic (PP) model (Read
et al. 2009), which was used to put general constraints on the
EOS based on nuclear physics and observations (Hebeler et al.
2010; Hebeler et al. 2013). However, the PP construction implies
discontinuities for other properties, such as the speed of sound.
The speed of sound is also physically constrained by both causality
requirements and an asymptotic limit at high density. This has led
some, most recently Tews et al. (2018b), to consider a sound-speed
based parametrization.

In this paper, we develop the speed of sound (CS) parametrization
further, and examine how it compares to the PP parametrization.
We do this by exploring the scenarios expected to be delivered
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by NICER. NICER has four primary targets, for which only one
has a known mass. We explore the types of constraints that might
arise from both PP and CS parametrizations, depending on where
in parameter space the sources of unknown mass end up being
located. Our analysis also lets us explore how sensitive the inference
of neutron star and dense matter properties is to both the choice
of EOS parametrization and the priors that are specified for the
parameters of a given model. This is of relevance to all efforts
to infer neutron star and EOS properties from observational data,
including gravitational wave observations of neutron star mergers
like GW170817 (Abbott et al. 2017), see e.g. Abbott et al. (2018),
Annala et al. (2018), Most et al. (2018), Tews, Margueron &
Reddy (2018a), and Lim & Holt (2018) that use parametrized EOS
models.

2 SP E E D O F S O U N D PA R A M E T R I Z AT I O N

The most commonly used EOS parametrizations in the literature,
the PP model (Read et al. 2009) and the spectral model (Lindblom
2010), parametrize the EOS space directly. Here we will in addition
choose to parametrize the speed of sound in the neutron star
interior and compare it to the established PP parametrization. To
determine the functional form of such a parametrization we take
into account constraints on the speed of sound coming from both
theoretical calculations and observations. First, the speed of sound in
the asymptotic high-density limit should converge to cs/c = 1/

√
3

according to calculations in perturbative quantum chromodynamics
(pQCD) (Fraga, Kurkela & Vuorinen 2014). These calculations have
furthermore shown that the speed of sound should converge to this
value from below, i.e. the leading-order corrections to this limiting
value are negative. The measurement of two-solar-mass neutron
stars (Demorest et al. 2010; Antoniadis et al. 2013)1 on the other
hand suggests that in the density regime between nuclear saturation
density and the high-density limit the speed of sound should exceed
the value of 1/

√
3. In particular, Bedaque & Steiner (2015) have

shown that no EOS can produce such a high neutron star mass
unless this value is exceeded in some density regime. That means
the CS parametrization needs to allow for an increase of the speed
of sound beyond the limit cs/c = 1/

√
3 at intermediate densities.

In order to describe the asymptotic behaviour of the speed
of sound we employ a logistic function, which at low densities
is matched to the theoretical calculations of neutron star matter
performed in Hebeler & Schwenk (2010) and Hebeler et al. (2013)
using nuclear interactions based on chiral effective field theory
(cEFT) (Epelbaum, Hammer & Meißner 2009; Hammer, Nogga &
Schwenk 2013). The results of these microscopic calculations are
used up to a density of ncEFT = 1.1n0, with the nuclear saturation
density n0 = 0.16 fm−3. For the density region n ≤ 0.5n0 the BPS
crust EOS is used (Baym, Pethick & Sutherland 1971; Negele &
Vautherin 1973). Remarkably, at the transition density n = 0.5n0

the results for the EOS of both approaches are consistent with each
other (see Hebeler et al. 2013 for details).

The increase of the speed of sound at intermediate densities is
modelled by a Gaussian function. The complete CS parametrization
can then be written as

c2
s (x)/c2 = a1 e− 1

2 (x−a2)2/a2
3 + a6 +

1
3 − a6

1 + e−a5(x−a4)
, (1)

1The mass of PSR J1614–2230 was recently updated from 1.97 ± 0.04 M�
(Demorest et al. 2010) to 1.928 ± 0.017 M� (Fonseca et al. 2016).

Figure 1. Illustration of the CS parametrization given in equation (1). The
square of the speed of sound is represented by the solid green line. At the
transition density εcEFT the model is matched to the cEFT band, while for
very high densities the speed of sound converges from below to the limit
of 1/

√
3 that is shown by the black dotted line. The blue dashed outline

represents the parameter space that is consistent with the constraints listed
in the text. The grey area at low densities represents the excluded region by
the Fermi liquid theory (FLT) constraints. Details are given in the text.

with x ≡ ε/(mNn0) and the nucleon mass mN = 939.565 MeV. The
parameter a6 is fitted to match to the upper and lower limit of the
band predicted by cEFT at the transition energy density εcEFT =
ε(ncEFT).2 One could in principle match continuously to the cEFT
band, but this requires information on the functional form of the EOS
within the band (in order to obtain the speed of sound). Because
the mass and radius of a neutron star are only weakly dependent on
the EOS at these densities, we expect that our main findings will
however not depend on this particular choice. The values of the other
free parameters, a1 to a5, are allowed to vary freely over a wide range
of values, and are only limited by physical constraints which are
discussed in more detail in the next section. The parametrization (1)
allows us to generate a large range of different types of EOSs,
ranging from very soft to very stiff. The qualitative form of the
speed of sound resulting from this parametrization is shown in
Fig. 1.

Starting from the speed of sound, the pressure as a function of
energy density is then obtained via integration,

P (ε) =
∫ ε

0
dε′ c2

s (ε′)/c2 . (2)

The form of our CS parametrization is very similar to the one used
by Tews et al. (2018b). The two major differences are their use of
an exponential function to model the asymptotic behaviour of cs at
large densities as compared to our logistic function; and their use
of a skewed Gaussian, where we use a non-skewed Gaussian. We
have performed additional computations with a model that include
a skewed Gaussian and found the results presented in this paper to
be robust. In addition to these differences in the parametrization,
we also apply different constraints in the low-density region. In
particular, Tews et al. (2018b) used a less conservative value for
the upper density limit ncEFT = 2.0 n0 (rather than ncEFT = 1.1 n0

in this work), which leads to tighter constraints for the EOS.
The precise value of the breakdown density scale for nuclear

2Note that the transition densities εcEFT differ for the lower (min) and
upper (max) limit of the cEFT band, with εmin

cEFT = 167.8 MeV fm−3 and
εmax

cEFT = 168.5 MeV fm−3 (Hebeler et al. 2013).
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Inference of neutron star and dense matter properties 5365

Figure 2. Comparison of the ranges for the EOS (left-hand panel) and mass–radius relations of neutron stars (right-hand panel) based on the PP and CS
parametrizations after including all constraints discussed in Section 2.1. The black lines show the three representative EOS of the PP model (Hebeler et al.
2013), the light blue bands show the uncertainty ranges resulting from the PP model and the darker green bands those from the CS model.

interactions in nuclear matter is still an open question and subject to
current research. Note that there are certainly other choices for the
functional form of a CS-based parametrization that would meet the
physical criteria we have used in its formulation; we are using this
particular example here to illustrate the effects of different choices
for the EOS model.

2.1 Definition of the parameter space

2.1.1 Speed of sound parametrization

For the generation of individual EOS based on the CS parametriza-
tion (1) we allow the free parameters to vary over a wide range of
values and retain only those EOS that fulfil the following physical
constraints:

(i) Each EOS is required to be able to support at least a 1.97 M�
neutron star, which is the lower 1σ limit of the heaviest precisely
measured neutron star PSR J0348+0432 (Antoniadis et al. 2013).

(ii) The speed of sound for each EOS must be causal, i.e. be lower
than the speed of light, for all energy densities relevant in neutron
stars. If the EOS becomes acausal before the maximum mass is
reached, we discard these parameter values.

(iii) The speed of sound for each EOS must converge to 1/
√

3
from below at least for asymptotically high densities (∼50 n0) as
determined by pQCD calculations (Fraga et al. 2014).

(iv) Whenever the speed of sound for an EOS is negative, we set
cs = 0. This allows for regions of constant pressure as would be the
case for a first-order phase transition.

(v) For densities n ≤ 1.5 n0 we assume that the bulk properties
of matter can be described as a normal Fermi liquid. In Landau FLT
(Baym & Pethick 2007), the speed of sound is given by

c2
s,FLT(n)/c2 = 1 + F0

m∗
N/mN

1

3m2
N

(
3π2n

) 2
3 , (3)

where F0 denotes the spin-independent and isotropic (l = 0) Landau
parameter characterizing particle interactions. In FLT, nucleons
are described in terms of effective degrees of freedom, so-called

quasi-particles, with effective mass m∗
N. The dimensionless Landau

parameter F0 is expected to be attractive, and calculations for
neutron matter suggest F0 ≈ −0.5(2) as well as m∗

N/mN ≈ 0.9(2) at
saturation density (Schwenk, Friman & Brown 2003; Schwenk &
Friman 2004). Moreover, both 1 + F0 and m∗

N/mN are of expected
to be of order one. Given the above considerations, it is very
conservative to assume 1+F0

m∗
N/mN

≤ 3 up to 1.5 n0. This implies

c2
s,FLT(n)/c2 ≤ 1

m2
N

(
3π2n

) 2
3 , (4)

which amounts to c2
s,FLT ≤ 0.163c2 for n = 1.5 n0. We discard any

EOS that exceeds this value for n ≤ 1.5 n0. While this choice is
very conservative, we note that it affects the specific upper radius
limit of the resulting mass–radius uncertainty bands.

For our practical calculations we choose the following ranges
for the parameters in the CS parametrization (1). While isolated
parameters outside these bounds may exist that result in a stable EOS
satisfying the above constraints, we have checked that pushing these
bounds further does not significantly affect the ranges presented in
Fig. 2:

(1) For the normalization of the Gaussian, we require
0.1 ≤ a1 ≤ 1.5. Lower values do not produce an EOS that supports
a 1.97 M� neutron star, at least for our sample of ∼105 EOS, and
higher values result in an acausal EOS.

(2) The bounds on the mean of the Gaussian are taken to be
1.5 ≤ a2 ≤ 12.

(3) For the width of the Gaussian in terms of the mean we take
the following range 0.05 ≤ a3/a2 ≤ 2.

(4) The mean of the logistic function is taken to be within
1.5 ≤ a4 ≤ 37.

(5) For the steepness of the logistic function we take 0.1 ≤ a5 ≤ 1.

As discussed above, the last parameter, a6, is fixed by matching
to either the upper or the lower limit of the cEFT band at the
transition energy density εcEFT. Within the bounds (1)–(5) for
the five parameters mentioned above, we calculate on a grid a
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large sample of different EOS and retain only those that fulfil
all of the constraints (i)–(v). This calculation is only used to
give an indication of the possible band that the EOS in the CS
model spans in Fig. 2. During the Bayesian inference described in
Section 3.1, all parameters in the model are considered continuously,
subject to the prior bounds and constraints described above, so
that for the Bayesian inference effectively an even larger sample is
considered.

2.1.2 Piecewise polytropic parametrization

Next, we summarize for completeness and comparison the details
and parameter space of the PP parametrization as used in Hebeler
et al. (2013). The part of the EOS up to the transition density is the
same as for the CS parametrization used in this work. It consists of
the BPS crust EOS and the cEFT band up to ncEFT = 1.1 n0. For
higher densities the EOS is extended using piecewise polytropes
with three segments. The parameter ranges for the polytropic
exponents are 1.0 ≤ �1 ≤ 4.5, 0 ≤ �2 ≤ 8.0, and 0.5 ≤ �3 ≤ 8.0. The
values for �i are varied using a stepsize of 0.5. The densities between
the polytropes are 1.5 n0 ≤ n12 < n23 < nmax, where nmax ≈ 8.3 n0

is found to be the maximum central density reached. The transition
densities nij are varied in steps of 0.5 n0. In this approach only
the neutron star mass constraint (i) and causality constraint (ii) of
Section 2.1.1 are used. Instead of the FLT constraint (v), note that
the range of the first polytropic index �1, which also controls the
stiffness in the density range ncEFT ≤ n ≤ 1.5 n0, was restricted in
Hebeler et al. (2013) to a smaller range 1.0 ≤ �1 ≤ 4.5.

2.1.3 Comparison of the parametrizations

In Fig. 2, we compare the EOS and mass–radius bands resulting
from the PP and CS parametrization, after including all constraints
discussed above. In general, the PP model covers a larger area
in EOS space as well as in mass–radius space. This is for the
following reasons. First, the constraints at low densities are not
exactly equivalent in both parametrizations. For the PP model the
range of the polytropic index �1 was restricted explicitly, whereas
for the CS parametrization the FLT constraint was employed. It
turns out that the upper FLT limit is more constraining, such that
more stiff EOS and hence more neutron stars with larger radii are
discarded by this constraint. This shows that the upper radius limit
of a typical neutron star is quite sensitive to the particular choice of
constraints at nuclear densities. In addition, because the PP model
allows for strong stiffening after a first-order phase transition, an
EOS can be very soft for small to intermediate densities and get
very stiff at higher densities, such that the mass constraint is still
fulfilled. While the CS model allows for phase transitions as well,
it does not allow the EOS to jump to (cs/c)2 > 1/3 for densities
after the phase transition, preventing the EOS from a corresponding
strong stiffening.

3 IN F E R R I N G E O S A N D M A S S – R A D I U S
PROPERTIES

3.1 Framework for Bayesian inference

Next, we describe the statistical framework for constraining the
EOS using Bayesian inference, following the protocol outlined
in Riley et al. (2018). Using Bayes’ theorem, we can write the
posterior distribution on the parameters of interest θ , in our case

the EOS parameters and central densities (interior parameters), as
being proportional to a prior distribution π times the likelihood L,

P(θ |D,M,I) = π (θ |M,I)L(D|θ ,M)

P(D|M,I)

∝ π (θ |M,I)L(D|θ ,M) , (5)

where D denotes an observational dataset, M the model used,
and I the Bayesian prior information, such as information from
previously analysed datasets. Because the EOS parameters and the
central densities are deterministically related to the mass and radius
of a neutron star through the relativistic stellar structure equations
(the Tolman–Oppenheimer–Volkoff equations in the non-rotating
limit), the following must be true for the likelihood:

L(D|θ ,M) ≡ L(D|M, R,M) . (6)

Furthermore, for reasons of computational feasibility, we assume

L(D|M, R,M) ∝ P(M, R|D,M,I) . (7)

This follows the approach outlined in section 2.3.4 of Riley et al.
(2018), termed the Interior Prior paradigm (more robust than the
alternative Exterior Prior method), but uses the approximative
marginal likelihood function of the exterior parameters (mass and
radius),3 to calculate the marginal posterior function of interior
(EOS) parameters. It is a less computationally intensive alternative
to full direct inference of EOS parameters from the data. As outlined
in Riley et al. (2018), this assumption only holds when the prior on
mass and radius, which is implicitly defined in the proportionality,
is sufficiently non-informative.4 A second assumption is that the
datasets of different observed neutron stars are independent, which
allows us to separate the likelihoods and rewrite equation (5), using
equations (6) and (7), as

P(θ |D,M,I) ∝ π (θ |M,I)
s∏

i=1

P(Mi, Ri |Di ,M,I) , (8)

for s number of observed stars. This method is numerically similar
to the methods used in Steiner, Lattimer & Brown (2010), Özel et al.
(2016), and Raithel, Özel & Psaltis (2017).

3.1.1 Choice of priors

The choice of the prior in equation (8) can play an important role
in the inference of EOS parameters (Steiner, Lattimer & Brown
2016) and as such has to be carefully considered. For the PP
parametrization as well as for the CS parametrization we use a
uniform, continuous prior for all parameters, within the ranges
described in Section 2.1. We impose the five requirements described
for the CS parametrization and adopt the requirements from Hebeler
et al. (2013) for the PP parametrization. The prior on the central
energy density of the star is chosen as a uniform prior on log (εc),
with a lower bound of log(εc/g cm−3) = 14.6 and an upper bound
that corresponds to the maximum central energy density reached in
a neutron star for that given EOS.

3Note that these are not actually computed in this paper, but directly
presented as bivariate Gaussian distributions.
4This is expected to be the case for NICER analysis, even for sources like
primary target PSR J0437−4715 where the well-constrained mass arising
from radio observations (Reardon et al. 2016) is treated as a prior; this is
because the original radio analysis used a non-informative prior in their
computations.
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Inference of neutron star and dense matter properties 5367

Figure 3. Top: Prior probability distributions transformed to the space of pressure as a function of energy density for the PP (left-hand panel) and CS
parametrization (right-hand panel). The dotted and dashed lines indicate the 68 per cent and 95 per cent credible regions of the distributions, while the solid
lines are the representative EOS from Hebeler et al. (2013). Both prior distributions exhibit a narrow region where most of the probability density is clustered,
which falls off steeply towards higher and lower pressures. Bottom: Similar to the upper panels, but now the prior distributions are transformed to the space of
mass and radius. We observe that the prior constraints from Section 2.1 result in a higher probability density towards larger radii for both parametrizations.
The bimodal feature of the distributions is caused by the way the models have been matched to the lower and upper limit of the cEFT band.

To understand the significance of the prior, we sample its
distribution for both models and transform it to the space of pressure
and energy density as well as to mass and radius. The resulting
prior probability distributions are shown in Fig. 3, where each
histogram contains several times 105 samples. Comparing these
distributions to the general bands highlighted in Fig. 2, one clearly
sees much more structure in the distributions than one might naively
expect from the bands. For the CS parametrization the structures are
qualitatively similar with the sound-speed-based parametrization
used in Tews et al. (2018b). In the space of pressure and energy
density both models show a narrow region where the distribution
is peaked, with the probability density at a given energy density
quickly falling off when moving to higher and lower pressures.
For both models these regions encompass reasonably stiff EOS,
a consequence of enforcing that the EOS supports a 1.97 M�
neutron star.

The distribution in mass–radius space shows similar structures,
with the 68 per cent credible regions enclosing remarkably narrow
radius regions, e.g. for typical 1.4 M� neutron stars less than 1 km

for the CS parametrization. From Fig. 3 it is also evident that the PP
model is even more peaked towards larger radii, especially at masses
above ∼1.5 M�. The apparent bimodality of the 68 per cent credible
regions in both models is a consequence of matching the models to
the lower and upper limit of the cEFT band at the transition density
ncEFT. The CS model further shows a significant peak just above
2 M�. This is a result of the speed of sound decreasing for most
EOS at densities around 2 × 1015 g cm−3 or higher, causing their
corresponding mass–radius curves to show only small changes in
mass but large changes in radius. The fact that this occurs visibly
just above 2 M� is because EOS that do not reach this mass are
discarded.

3.1.2 Numerical methods

To sample the posterior distribution in equation (8) we use the
PYTHON implementation of the Bayesian inference tool MULTINEST

(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al.
2013; Buchner et al. 2014). MULTINEST makes use of a sampling
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technique called Nested Sampling (Skilling 2004), where a fixed
number of parameter vectors is kept throughout the sampling (so-
called live points), sorted by their likelihood values and drawn
randomly from the prior distribution. The parameter vector with the
smallest likelihood is replaced each time with a parameter vector
with a higher likelihood, thereby scanning over the full parameter
space until the remaining parameter volume becomes small enough
and the algorithm terminates.

The prior in the MULTINEST software is always uniformly drawn
from the unit hypercube, and thus requires a transformation to
comply with a chosen prior. Mostly we want to sample uniformly
between prior bounds, which can be easily expressed as

θ = θmin + (θmax − θmin)x , (9)

where x is drawn from the uniform distribution between 0 and 1.
However, the transition densities in the PP parametrization, n12 and
n23 are subject to the additional requirement that n12 < n23. To
uniformly draw from the triangle θmin < θ1 < θ2 < θmax we employ
the transformation from Handley, Hobson & Lasenby (2015)5

θ1 = θmin + (θmax − θmin)(1 − √
x) ,

θ2 = θ1 + (θmax − θ1)(1 − x) . (10)

We also note that the prior on central densities is dependent
on the other EOS parameters, i.e. π (εc|θ ,M,I), which re-
quires the calculation of the full corresponding mass–radius
curve to determine the central density where unstable solutions
appear.

The posterior distributions presented in this paper are furthermore
calculated with a sampling efficiency of 0.8 and 5000 live points to
ensure reasonable runtimes. We have made sure, however, that the
obtained posteriors are robust to changes in these settings.

3.1.3 Bayes factors

To make a quantitative comparison between the CS and PP models
we explore their posterior odds (Jeffreys 1998), which is defined
as the ratio between their posterior probabilities. Using Bayes’
theorem we can write this as:

P(Mcs|D,I)

P(Mpp|D,I)
= B

P(Mcs|I)

P(Mcs|I)
= Bayes factor × prior odds, (11)

where the Bayes factor is defined as the ratio between what is called
the evidence or sometimes the marginal likelihood:

B = P(D|Mcs,I)

P(D|Mpp,I)
. (12)

If we assume that both models are equally probable a priori, we
can use the Bayes factor to compare between the two models. The
calculation of these factors is straightforward given that MULTINEST

automatically computes the evidence for each model.

3.2 Configurations of mass–radius posterior distributions

In order to compare different methods of constraining the EOS
and the effect the parametrization has on these constraints we

5Note the typo in equation (A13) in Handley et al. (2015), where x
1/(n−i+1)
i

should be (1 − x
1/(n−i+1)
i ).

explore multiple scenarios of mass–radius posterior distributions.
All distributions are modelled as bivariate Gaussian distributions

P(M, R|D,M,I)= σMσR

2
exp

[
− (M − μM )2

2σ 2
M

− (R − μR)2

2σ 2
R

]
,

(13)

with the mean of the distribution centred on a specific underlying
EOS. Note that realistic mass–radius posteriors expected from the
waveform modelling technique used by NICER will have some
degeneracy between mass and radius (see e.g. Miller & Lamb
2015). However, the differences that might result from different
parametrizations of the EOS can be illustrated using simplified
posteriors, without a mass–radius degeneracy.

For each scenario of different mass sources, we consider two
different underlying EOS: a relatively soft, standard EOS with a
radius around 11 km (labelled A); and a more extreme EOS covering
a larger spread in radii (labelled B). We then define scenarios that
may emerge as a result of the NICER observations.

For the first two scenarios we consider the two primary science
targets of NICER (Arzoumanian et al. 2014): the pulsar PSR
J0437−4715 with a mass of 1.44 ± 0.07 M� (Reardon et al. 2016)
and PSR J0030+0451, for which the mass is unknown. In Case
1 we assume that the mass of this pulsar is 2.0 M� and in Case
2 that it is 1.2 M�. In Cases 3 and 4 we add two more stars, so
that we have four mass–radius posteriors. This is representative of
the results eventually expected from NICER. The next two highest
priority targets being studied by NICER are PSR J1231+1411 and
PSR J2124–3358; for neither of these stars the mass is known. For
Case 3 we assume that the three unknown masses lie relatively
closely together: 1.4, 1.5, and 1.7 M�. In Case 4 we take them to
be more widely spread: 1.2, 1.7, and 2.0 M�. This is obviously
far from exhaustive, but lets us explore a range of representative
scenarios.

We then add a random scatter to all masses and radii drawn from
a Gaussian distribution centred on the EOS with standard deviation
of 3 per cent of the chosen mass and radius values, except for the
known neutron star mass. The uncertainties of the distributions,
σ M and σ R, are randomly picked from a uniform distribution
between 5 and 10 per cent of the central mass–radius values, except
again when the mass is known. As each of these configurations is
considered with two different underlying EOS, we have a total
number of eight scenarios, depicted in Fig. 4.

3.3 Posterior distributions

3.3.1 Interior parameter space

For each scenario described in the previous section we obtain
from MULTINEST a set of equally weighted posterior samples. The
posterior distribution on the EOS parameters can then be estimated
by binning these samples and applying a smoothing kernel density
estimation.6 Two examples (for Cases 1B and 4A) are given in
Figs 5 and 6 for the five EOS parameters in the CS and PP models.
In each subplot the distribution is marginalized over the parameters
not shown. For the CS model we include the parameters describing

6In this case we have used a Gaussian kernel density estimation, which means
that each bin is estimated as a Gaussian and weighted by its frequency. The
full distribution is then a smooth summation of all the individual Gaussians.
To determine the parameter k that controls the smoothing, we have used
Scott’s Rule (Scott 1992), i.e. k = n−1/(d + 4), where n is the number of
datapoints and d the number of dimensions.
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Inference of neutron star and dense matter properties 5369

Figure 4. Different scenarios of mass and radius posteriors explored in this work. The elliptical contours show the 1σ levels of the distributions. The solid
contours represent the pulsar PSR J0437−4715 with a known mass of 1.44 ± 0.07 M�; the dashed contours are the stars whose mass is not known a priori.
The black mass–radius curves correspond to the underlying EOS on which the peak of the Gaussian posteriors is centred before a random scatter was added.
The green and blue shaded areas are the full bands given by the CS and PP models, respectively, as in Fig. 2.

the underlying EOS used to generate the mass–radius posteriors.
These might not necessarily be the parameters that receive the
most support from the likelihood after adding a random scatter, but
they still represent an EOS that is consistent with the mass–radius
posteriors.

We can translate this posterior distribution to the space of the EOS
by discretizing εi on to a grid and calculating for each posterior sam-
ple the pressure P = P(εi). From these pressure values we create a set
of one-dimensional histograms at an εi and subsequently calculate
the 95 per cent credible region. The individual credible regions at
each εi are then joined together to obtain a band that represents
the 95 per cent credible region of the posterior distribution for the
EOS. This is shown in Fig. 7. A striking feature of these bands is
the narrowing at intermediate densities, which suggests that tight

constraints on the physics of dense matter are possible.7 In most
cases the underlying EOS falls within these bands, but in some A
scenarios the underlying EOS lies slightly outside for some energy
densities. This is a consequence of the prior constraints, which
lead to stiffer EOS receiving more prior support (see Fig. 3 and
the discussion in Section 3.1.1), which is closer to the B scenarios.
When the likelihood encompasses softer EOS, as in the A scenarios,

7As a check, we determined the predicted radii of a typical neutron star with
a mass of 1.4 M� and the pressure at twice saturation density for each EOS
inside the uncertainty band. We found that R1.4 M� is strongly correlated
with P (2 n0), which is consistent with the findings by Lattimer & Lim
(2013).
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5370 S. K. Greif et al.

Figure 5. Posterior distributions for the EOS parameters for the CS parametrization for Cases 1B (red) and 4A (blue) (see Fig. 4 for both scenarios). The light
and dark shaded regions indicate respectively the 68 per cent and 95 per cent credible regions of the two-dimensional marginalized posteriors. The line plots
are the one-dimensional marginalized posteriors for each parameter. The dash–dotted blue and red lines give the parameters describing the underlying EOS
used to generate the mass–radius posteriors (see Section 3.2).

the posterior distribution consequently peaks in the region that has
finite support from both the prior and the likelihood, so that the
posteriors get shifted to stiffer EOS. Moreover, the horizontal bars
in each panel of Fig. 7 give the 95 per cent confidence interval
for the marginalized posterior distribution of the maximal central
energy density reached in neutron stars. This shows the highest
central densities that are relevant to neutron stars, which are well
below the asymptotic pQCD regime.

In Fig. 8 we show the corresponding bands for the speed of sound
for the CS model. The dark and light green bands correspond to
the 95 per cent and 68 per cent credible regions, respectively. For
the scenarios shown, the constraints from FLT at lower densities
have no significant impact on the posterior distributions. The FLT
constraints would become important if a large and heavy neutron
star were to be included in the mass–radius posterior distributions

(see Fig. 4). With increasing densities the speed of sound increases
monotonically well beyond (cs/c)2 = 1/3 up to energy densities
exceeding 1015 g cm−3 for all considered scenarios. Only close to
the maximal central energy density (see horizontal bars in Fig. 7),
when the maximal mass of the neutron star has been reached, does
the speed of sound tend to decrease below this value again. This is
due to the softening necessary to remain causal. This shows that the
pQCD constraints used in the CS parametrization (see Section 2) are
important only for densities well beyond the regime that is relevant
for typical neutron stars.

3.3.2 Exterior parameter space

For the parameter space of neutron star masses and radii we show
the posterior predictive distribution, which gives the probability
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Inference of neutron star and dense matter properties 5371

Figure 6. Same as Fig. 5 but for the PP parametrization.

of a new mass–radius point given the posterior distribution of the
EOS parameters. To avoid redrawing samples from the posterior
distributions we use the posterior samples obtained in our analyses,
marginalize over central densities and draw a new central density
from their prior distribution. Numerically this results in a set of
mass–radius points for which we can calculate the 68 per cent cred-
ible region by binning and performing kernel density estimation.

We show the credible regions for these posterior predictive
distributions for all the scenarios considered in Fig. 9, for both the
PP and CS parametrizations. In most cases both parametrizations
result in similar bands in mass–radius space, however, there are
also significant differences between the two parametrizations. In
all cases where the likelihood is centred around lower mass stars,
the PP models allow for a larger region at larger radii, especially
in Cases 2B and 3B. This is a direct consequence of the form of
the parametrization, as the PP model includes EOS that produce
mass–radius curves with almost constant radius up to high masses.

The speed of sound model however does not permit these kinds
of EOS due to the form of the Gaussian, which forces every EOS
to soften again after the peak of the Gaussian to comply with the
pQCD constraint. Note that the small bimodal feature for the PP
parametrization at low masses in Cases 1B and 4B is a consequence
of the way the polytropic extensions are matched to the upper and
lower limit of the cEFT band.

In addition to the posterior distributions in Fig. 9, we also show
with dotted lines the region one would obtain when discarding
all EOS from the PP and CS band that do not produce mass–
radius curves going through all 1σ contours of the mass–radius
posteriors. This could be termed a simple compatibility cut. We note
that in general these regions could be used as a very conservative
estimate of EOS that would have a finite probability when inference
is performed. One has to be careful though: in Cases 1A and 2A
this region would exclude few EOS that are within the 68 per cent
credible region of the posterior distribution; and in general Bayesian

MNRAS 485, 5363–5376 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/4/5363/5374528 by U
niversiteit van Am

sterdam
 user on 20 M

arch 2020



5372 S. K. Greif et al.

Figure 7. 95 per cent credible regions of the posterior distributions for the EOS for the CS (green) and the PP model (blue). For comparison, the red dashed
line represents the underlying EOS used to generate the mass–radius posteriors, while the black EOS are the three representative EOS from Hebeler et al.
(2013). The narrow features of the green and blue regions are a result of the prior and the likelihood peaking in different regions of parameter space. Especially
for Cases A the posterior distribution follows closely the edge of the priors in Fig. 3, indicating that the posteriors are not completely likelihood-dominated.
The green and blue horizontal bars in each panel give the 95 per cent confidence interval for the marginalized posterior distribution of the maximal central
energy density reached in neutron stars, for the CS and PP model according to the colour code.

inference of the parameters provides much tighter constraints, which
however requires that the prior assumptions and sampling are fully
understood.

For all posterior distributions for the A scenarios the 68 per cent
credible regions for both the PP and CS models seem centred
towards larger radii than one might expect. This behaviour again
follows from the prior used on the EOS parameters. To better
understand how the uniform prior on EOS parameters affects the
posterior distribution, we show in Fig. 10 a one-dimensional cut
for a 1.44 M� star of the probability distributions of the priors for
both parametrizations and the likelihood given by the ellipse of
the 1.44 M� star (PSR J0437−4715) of Fig. 3. Fig. 10 illustrates
clearly that the posterior distribution is not completely likelihood-

dominated, due to the prior pushing towards larger radii. As a result,
there is only a small region of parameter space around 11.5 km
where there is both finite support from the likelihood and the prior,
leading to an unexpectedly peaked posterior for the radius and the
narrow regions for the mass–radius bands in Fig. 10.

3.3.3 Bayes factors

In order to compare the CS and PP model quantitatively we use the
pieces of evidence computed by MULTINEST to calculate the Bayes
factors (see Section 3.1.3). The values are reported in Table 1, where
B ≥ 1 and B ≤ 1 indicates more support for the PP model and the CS
model, respectively. Following the interpretation provided by Kass
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Inference of neutron star and dense matter properties 5373

Figure 8. Posterior distributions of the speed of sound in the CS model, where the dark and light green regions represent the joined 68 per cent and 95 per cent
credible regions at discrete energy densities. The red area at lower densities gives the speed of sound of the cEFT band calculated by Hebeler et al. (2010). The
dotted line indicates the value 1/

√
3 of the speed of sound in the asymptotic pQCD limit, and the grey area is the excluded region by the Fermi liquid theory

(FLT) constraints.

& Raftery (1995) none of the Bayes factors shown here indicate
that one of the two models is more favoured by the data.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we have explored constraints on the EOS of dense
matter resulting from future measurements of neutron star masses
and radii, combined with EOS constraints from nuclear physics, a
two-solar-mass neutron star, and causality. To this end, we employed
a Bayesian inference framework and considered different scenarios
of neutron star observations that reflect possible outcomes of the
ongoing NICER mission. By using two different EOS parametriza-
tions we demonstrated how constraints on properties of dense matter
and neutron stars can be inferred from such measurements and how

to probe the sensitivity of the results to particular descriptions of
the EOS.

In addition to the well-established PP parametrization, we have
developed an alternative description based on the speed of sound
in a neutron star. We argue that such a parametrization makes more
physical connections than the PP parametrization, as it produces
EOS with a continuous speed of sound, can take into account
constraints based on FLT, and complies with the asymptotic high-
density limit from pQCD calculations, although the latter are well
beyond the densities reached in neutron stars. In Section 2.1 we
showed that the PP parametrization used in Hebeler et al. (2013)
and the introduced CS model generate a relatively similar band
of EOS after incorporating the same constraints from nuclear
physics at lower densities, a two-solar-mass neutron star, and
causality.
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5374 S. K. Greif et al.

Figure 9. 68 per cent credible regions of the posterior distribution for the mass and radius for the CS (green) and the PP (blue) models. The dotted lines in
contrast illustrate the band of all EOS that generate mass–radius curves passing through the 1σ contours of the likelihood. These are much wider than the
posterior distributions obtained from the Bayesian inference. The elliptical contours of the input mass–adius posteriors for each scenario are shown as well for
reference. As in Fig. 4 the solid contour is for PSR J0437−4715 with a known mass of 1.44 ± 0.07 M�, and the dashed ellipses are the other sources.

Using these two EOS parametrizations, we have performed pa-
rameter estimation for eight different scenarios of possible posterior
mass–radius distributions, with either 2 or 4 stars. We find that
the difference in the resulting posterior distributions between the
two EOS parametrizations is most notable when all stars have
low masses, as the CS model produces fewer EOS with an almost
constant radius. For the scenarios where the stars have smaller radii,
posterior distributions of the CS model are more peaked towards
softer EOS, although the posterior for both models seems shifted
towards larger radii than one would expect from the likelihood
function.

The offset between the mass–radius likelihood distributions and
the inferred posterior distributions for soft EOS scenarios is a
consequence of the uniform prior on the EOS parameters and other

prior constrained in all scenarios. In Fig. 3 the prior in the EOS
parameters is shown to map to a prior on mass and radius that peaks
towards larger radii. As a result the posterior distributions are not
completely likelihood dominated, although still in good agreement
with the 1σ regions of the mass–radius posteriors.

It might be possible to choose a prior that results in a more
uniform distribution in either EOS space or when translated to
mass–radius space (due to the complex mapping of the TOV
equations it is not clear that one can achieve both simultaneously),
but the distribution in Fig. 3 is a consequence of reasonable
assumptions regarding the nature of dense matter around saturation
density, together with the observational constraint of the measured
pulsar PSR J0348+0432 (Antoniadis et al. 2013) with a mass of
2.01 ± 0.04 M�. There is, however, still some freedom in the way
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Inference of neutron star and dense matter properties 5375

Figure 10. One-dimensional cut for a 1.44 M� star of the probability
distributions of the priors for both parametrizations and the likelihood given
by the ellipse of the 1.44 M� star (PSR J0437−4715) of Fig. 3. In addition,
we show the resulting posteriors for both parametrizations, both for Case
1A.

Table 1. The computed Bayes factors for comparing the PP model to the
CS model.

Scenario Bayes factor
A B

Case 1 0.653 ± 0.026 0.416 ± 0.016
Case 2 1.320 ± 0.055 1.962 ± 0.079
Case 3 1.615 ± 0.100 1.433 ± 0.083
Case 4 0.821 ± 0.050 2.012 ± 0.111

the parameter space is sampled. Further research is then required to
investigate whether, e.g. parameters drawn logarithmically result in
more uniform distributions in EOS space and mass–radius space.
One alternative might be to use Gaussian processes to generate a
non-parameteric EOS, as in the recent paper by Landry & Essick
(2018) on EOS inference from gravitational wave measurements;
however even in that case posteriors were found to be prior-
dominated due to limited data. Another alternative would be to
ensure that any peaking in the distribution is genuinely physically
motivated, rather than a somewhat inadvertent consequence of
trying to cover a range of parameter space, as it is for the models
examined in this paper. If in the future neutron stars with low
radii were measured, or with lower uncertainty, then the posterior
distribution would be more likelihood dominated, shifting the peak
of the distribution to smaller radii as well. In principle the approach
that we have outlined in this paper can be used to determine the level
of uncertainty on M − R posteriors necessary to ensure that EOS
measurements are likelihood dominated. A comprehensive answer
to this question will depend on the precise spread of masses and the
exact shape of the M − R posteriors (which could be multimodal).
One should also consider the impact for a broader range of input
EOS, and the fact that it may only be necessary to reduce the
uncertainty (by increasing observing time) on a subset of the M − R
posteriors. Once preliminary NICER results are available, it would
be extremely valuable to carry out such an analysis.

Due to this sensitivity of the results to the prior distribution the
interpretation of the posterior distributions as shown in Figs 7–9

requires some care. In particular, it will be key to systematically
study the effects of different choices for sampling the individual
EOS before robust conclusions on constraints for the EOS and
neutron star radii can be drawn. For example, if one naively discards
all EOS that are not within the 95 per cent credible region of the
posterior distribution of Case 2A or Case 4A, the underlying EOS
would not be recovered (see Fig. 9).

It could be argued that given the prior distribution on the EOS
in Fig. 3, our choice of a relatively soft EOS to centre the mass–
radius posteriors on is not reasonable. However, inference using
X-ray spectral modelling of neutron stars seems to favour radii in
the range of 9–13 km (see e.g. Steiner, Lattimer & Brown 2013;
Bogdanov et al. 2016; Nättilä et al. 2016, 2017; Özel et al. 2016;
Shaw et al. 2018), although the methods are heavily affected by
systematics that are still to be resolved (see e.g. Watts et al. 2016)
and the sensitivities revealed in this work also need to be accounted
for. Another constraint on the neutron star radius comes from the
tidal deformability effects on the waveform of a binary neutron
star inspiral, first detected in August 2017 (Abbott et al. 2017).
The 90 per cent credible region of the posterior distribution on radii
derived from this event falls roughly in the range of 10–14 km
(Abbott et al. 2018; Annala et al. 2018; Lim & Holt 2018; Most
et al. 2018; Tews et al. 2018a). The soft EOS chosen in this paper,
with a radius of 11 km, is therefore well within the range of radii
quoted in the literature. We stress that the presented EOS and mass–
radius regions in this paper are not based on real observational data
and hence cannot be directly compared to the extractions from these
references. However, our results demonstrate the significance of the
EOS priors and other EOS sensitivities in the inference, which
suggests that some of these analyses may have to be revisited for
a full statistical interpretation of the inferred EOS and neutron star
properties.
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