752 research outputs found

    Boundary elements of the Tetrahymena telomerase RNA template and alignment domains

    Get PDF
    Telomerase is a DNA polymerase fundamental to the replication and maintenance of telomere sequences at chromosome ends. The RNA component of telomerase is essential for the synthesis of telomere repeats. In vitro, the template domain (5'-CAACCCCAA-3') of the Tetrahymena telomerase RNA dictates the addition of Tetrahymena-specific telomere repeats d(TTGGGG)n, onto the 3' end of G-rich or telomeric substrates that are base-paired with the template and alignment regions of the RNA. Using a reconstituted in vitro system, we determined that altering the sequence of the alignment and template domains affects processivity of telomerase without abolishing telomerase activity. These results suggest that alternative template/alignment regions may be functional. In the ciliate telomerase RNAs, there is a conserved sequence 5'-(CU)GUCA-3', located two residues upstream of the template domain. The location and sequence of this conserved domain defined the 5' boundary of the template region. These data provide insights into the regulation of telomere synthesis by telomerase

    Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation

    Get PDF
    Telomerase is a ribonucleoprotein enzyme that adds telomeric repeats to chromosomes, maintaining telomere length and stabilizing chromosome ends. In vitro, telomerase from the ciliate Tetrahymena elongates single-stranded, guanosine-rich DNA primers by adding repeats of the Tetrahymena telomeric sequence, dT2G4. We have identified two activities of Tetrahymena telomerase in addition to the previously described processive elongation reaction: a 3'-5' nucleolytic cleavage of primer or product DNA and a nonprocessive mode of elongation. The nucleolytic cleavage activity removed residues not conforming to the telomeric repeat sequence from a primer 3' end, eliminating mismatch between DNA primer and RNA template sequences. Template-matched residues were also cleaved from primer or product DNA. Specific primer lengths, sequences, and concentrations stimulated cleavage and processive or nonprocessive elongation differentially. These newly identified activities suggest that telomerase may catalyze a range of telomere synthesis and repair functions and suggest mechanistic similarities between telomerase and RNA polymerase enzymes. On the basis of our results, we propose a model for telomerase primer binding, cleavage, and elongation

    The Telomerase Database

    Get PDF
    Telomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality. To keep up with the remarkable explosion of knowledge about telomerase, we compiled information related to telomerase in an exhaustive database called the Telomerase Database (http://telomerase.asu.edu/). The Telomerase Database provides comprehensive information about (i) sequences of the RNA and protein subunits of telomerase, (ii) sequence alignments based on the phylogenetic relationship and structure, (iii) secondary structures of the RNA component and tertiary structures of various subunits of telomerase, (iv) mutations of telomerase components found in human patients and (v) active researchers who contributed to the wealth of current knowledge on telomerase. The information is hierarchically organized by the components, i.e. the telomerase reverse transcriptase (TERT), telomerase RNA (TR) and other telomerase-associated proteins. The Telomerase Database is a useful resource especially for researchers who are interested in investigating the structure, function, evolution and medical relevance of the telomerase enzyme

    Leadership, the logic of sufficiency and the sustainability of education

    Get PDF
    The notion of sufficiency has not yet entered mainstream educational thinking, and it still has to make its mark upon educational leadership. However, a number of related concepts – particularly those of sustainability and complexity theory – are beginning to be noticed. This article examines these two concepts and uses them to critique the quasi-economic notion of efficiency, before arguing that the concept of sufficiency arises naturally from this discussion. This concept, originally derived from environmental thinking, has both metaphorical and practical impact for educational organizations and their leadership. An examination of three possible meanings suggests that while an embrace of an imperative concept of sufficiency seems increasingly necessary, its adoption would probably lead to a number of other problems, as it challenges some fundamental societal values and assumptions. Nevertheless, the article argues that these need to be addressed for the sake of both sustainable leadership and a sustainable planet

    Extreme Telomere Length Dimorphism in the Tasmanian Devil and Related Marsupials Suggests Parental Control of Telomere Length

    Get PDF
    Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago. Β© 2012 Bender et al

    Human Telomerase Reverse Transcriptase (hTERT) Q169 Is Essential for Telomerase Function In Vitro and In Vivo

    Get PDF
    BACKGROUND:Telomerase is a reverse transcriptase that maintains the telomeres of linear chromosomes and preserves genomic integrity. The core components are a catalytic protein subunit, the telomerase reverse transcriptase (TERT), and an RNA subunit, the telomerase RNA (TR). Telomerase is unique in its ability to catalyze processive DNA synthesis, which is facilitated by telomere-specific DNA-binding domains in TERT called anchor sites. A conserved glutamine residue in the TERT N-terminus is important for anchor site interactions in lower eukaryotes. The significance of this residue in higher eukaryotes, however, has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:To understand the significance of this residue in higher eukaryotes, we performed site-directed mutagenesis on human TERT (hTERT) Q169 to create neutral (Q169A), conservative (Q169N), and non-conservative (Q169D) mutant proteins. We show that these mutations severely compromise telomerase activity in vitro and in vivo. The functional defects are not due to abrogated interactions with hTR or telomeric ssDNA. However, substitution of hTERT Q169 dramatically impaired the ability of telomerase to incorporate nucleotides at the second position of the template. Furthermore, Q169 mutagenesis altered the relative strength of hTERT-telomeric ssDNA interactions, which identifies Q169 as a novel residue in hTERT required for optimal primer binding. Proteolysis experiments indicate that Q169 substitution alters the protease-sensitivity of the hTERT N-terminus, indicating that a conformational change in this region of hTERT is likely critical for catalytic function. CONCLUSIONS/SIGNIFICANCE:We provide the first detailed evidence regarding the biochemical and cellular roles of an evolutionarily-conserved Gln residue in higher eukaryotes. Collectively, our results indicate that Q169 is needed to maintain the hTERT N-terminus in a conformation that is necessary for optimal enzyme-primer interactions and nucleotide incorporation. We show that Q169 is critical for the structure and function of human telomerase, thereby identifying a novel residue in hTERT that may be amenable to therapeutic intervention

    Ancestral Mutation in Telomerase Causes Defects in Repeat Addition Processivity and Manifests As Familial Pulmonary Fibrosis

    Get PDF
    The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism. They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated disease

    Angular Dependence of Neutrino Flux in KM3 Detectors in Low Scale Gravity Models

    Full text link
    Cubic kilometer neutrino telescopes are capable of probing fundamental questions of ultra-high energy neutrino interactions. There is currently great interest in neutrino interactions caused by low-scale, extra dimension models. Above 1 PeV the cross section in low scale gravity models rises well above the total Standard Model cross section. We assess the observability of this effect in the 1 PeV - 100 PeV energy range of kilometer-scale detectors with several new points of emphasis that hinge on enhanced neutral current cross sections. A major point is the importance of ``feed-down'' regeneration of upward neutrino flux, driven by new-physics neutral current interactions in the flux evolution equations. Feed-down is far from negligible, and it is essential to include its effect. We then find that the angular distribution of events has high discriminating value in separating models. In particular the ``up-to-down'' ratio between upward and downward-moving neutrino fluxes is a practical diagnostic tool which can discriminate between models in the near future. The slope of the angular distribution, in the region of maximum detected flux, is also substantially different in low-scale gravity and the Standard Model. These observables are only weakly dependent on astrophysical flux uncertainties. We conclude that angular distributions can reveal a breakdown of the Standard Model and probe the new physics beyond, as soon as data become available.Comment: 25 pages, 6 figures, discussion of calculations expanded, references adde
    • …
    corecore