397 research outputs found
On sets of numbers rationally represented in a rational base number system
In this work, it is proved that a set of numbers closed under addition and
whose representations in a rational base numeration system is a rational
language is not a finitely generated additive monoid.
A key to the proof is the definition of a strong combinatorial property on
languages : the bounded left iteration property. It is both an unnatural
property in usual formal language theory (as it contradicts any kind of pumping
lemma) and an ideal fit to the languages defined through rational base number
systems
Parikh's Theorem: A simple and direct automaton construction
Parikh's theorem states that the Parikh image of a context-free language is
semilinear or, equivalently, that every context-free language has the same
Parikh image as some regular language. We present a very simple construction
that, given a context-free grammar, produces a finite automaton recognizing
such a regular language.Comment: 12 pages, 3 figure
Bounded Counter Languages
We show that deterministic finite automata equipped with two-way heads
are equivalent to deterministic machines with a single two-way input head and
linearly bounded counters if the accepted language is strictly bounded,
i.e., a subset of for a fixed sequence of symbols . Then we investigate linear speed-up for counter machines. Lower
and upper time bounds for concrete recognition problems are shown, implying
that in general linear speed-up does not hold for counter machines. For bounded
languages we develop a technique for speeding up computations by any constant
factor at the expense of adding a fixed number of counters
Real-Time Vector Automata
We study the computational power of real-time finite automata that have been
augmented with a vector of dimension k, and programmed to multiply this vector
at each step by an appropriately selected matrix. Only one entry
of the vector can be tested for equality to 1 at any time. Classes of languages
recognized by deterministic, nondeterministic, and "blind" versions of these
machines are studied and compared with each other, and the associated classes
for multicounter automata, automata with multiplication, and generalized finite
automata.Comment: 14 page
Regular realizability problems and context-free languages
We investigate regular realizability (RR) problems, which are the problems of
verifying whether intersection of a regular language -- the input of the
problem -- and fixed language called filter is non-empty. In this paper we
focus on the case of context-free filters. Algorithmic complexity of the RR
problem is a very coarse measure of context-free languages complexity. This
characteristic is compatible with rational dominance. We present examples of
P-complete RR problems as well as examples of RR problems in the class NL. Also
we discuss RR problems with context-free filters that might have intermediate
complexity. Possible candidates are the languages with polynomially bounded
rational indices.Comment: conference DCFS 201
Descriptional Complexity of Three-Nonterminal Scattered Context Grammars: An Improvement
Recently, it has been shown that every recursively enumerable language can be
generated by a scattered context grammar with no more than three nonterminals.
However, in that construction, the maximal number of nonterminals
simultaneously rewritten during a derivation step depends on many factors, such
as the cardinality of the alphabet of the generated language and the structure
of the generated language itself. This paper improves the result by showing
that the maximal number of nonterminals simultaneously rewritten during any
derivation step can be limited by a small constant regardless of other factors
The Lambek calculus with iteration: two variants
Formulae of the Lambek calculus are constructed using three binary
connectives, multiplication and two divisions. We extend it using a unary
connective, positive Kleene iteration. For this new operation, following its
natural interpretation, we present two lines of calculi. The first one is a
fragment of infinitary action logic and includes an omega-rule for introducing
iteration to the antecedent. We also consider a version with infinite (but
finitely branching) derivations and prove equivalence of these two versions. In
Kleene algebras, this line of calculi corresponds to the *-continuous case. For
the second line, we restrict our infinite derivations to cyclic (regular) ones.
We show that this system is equivalent to a variant of action logic that
corresponds to general residuated Kleene algebras, not necessarily
*-continuous. Finally, we show that, in contrast with the case without division
operations (considered by Kozen), the first system is strictly stronger than
the second one. To prove this, we use a complexity argument. Namely, we show,
using methods of Buszkowski and Palka, that the first system is -hard,
and therefore is not recursively enumerable and cannot be described by a
calculus with finite derivations
Silent Transitions in Automata with Storage
We consider the computational power of silent transitions in one-way automata
with storage. Specifically, we ask which storage mechanisms admit a
transformation of a given automaton into one that accepts the same language and
reads at least one input symbol in each step.
We study this question using the model of valence automata. Here, a finite
automaton is equipped with a storage mechanism that is given by a monoid.
This work presents generalizations of known results on silent transitions.
For two classes of monoids, it provides characterizations of those monoids that
allow the removal of \lambda-transitions. Both classes are defined by graph
products of copies of the bicyclic monoid and the group of integers. The first
class contains pushdown storages as well as the blind counters while the second
class contains the blind and the partially blind counters.Comment: 32 pages, submitte
Integer Vector Addition Systems with States
This paper studies reachability, coverability and inclusion problems for
Integer Vector Addition Systems with States (ZVASS) and extensions and
restrictions thereof. A ZVASS comprises a finite-state controller with a finite
number of counters ranging over the integers. Although it is folklore that
reachability in ZVASS is NP-complete, it turns out that despite their
naturalness, from a complexity point of view this class has received little
attention in the literature. We fill this gap by providing an in-depth analysis
of the computational complexity of the aforementioned decision problems. Most
interestingly, it turns out that while the addition of reset operations to
ordinary VASS leads to undecidability and Ackermann-hardness of reachability
and coverability, respectively, they can be added to ZVASS while retaining
NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure
On Second-Order Monadic Monoidal and Groupoidal Quantifiers
We study logics defined in terms of second-order monadic monoidal and
groupoidal quantifiers. These are generalized quantifiers defined by monoid and
groupoid word-problems, equivalently, by regular and context-free languages. We
give a computational classification of the expressive power of these logics
over strings with varying built-in predicates. In particular, we show that
ATIME(n) can be logically characterized in terms of second-order monadic
monoidal quantifiers
- …
