397 research outputs found

    On sets of numbers rationally represented in a rational base number system

    Full text link
    In this work, it is proved that a set of numbers closed under addition and whose representations in a rational base numeration system is a rational language is not a finitely generated additive monoid. A key to the proof is the definition of a strong combinatorial property on languages : the bounded left iteration property. It is both an unnatural property in usual formal language theory (as it contradicts any kind of pumping lemma) and an ideal fit to the languages defined through rational base number systems

    Parikh's Theorem: A simple and direct automaton construction

    Full text link
    Parikh's theorem states that the Parikh image of a context-free language is semilinear or, equivalently, that every context-free language has the same Parikh image as some regular language. We present a very simple construction that, given a context-free grammar, produces a finite automaton recognizing such a regular language.Comment: 12 pages, 3 figure

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1a2...ama_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters

    Real-Time Vector Automata

    Full text link
    We study the computational power of real-time finite automata that have been augmented with a vector of dimension k, and programmed to multiply this vector at each step by an appropriately selected k×kk \times k matrix. Only one entry of the vector can be tested for equality to 1 at any time. Classes of languages recognized by deterministic, nondeterministic, and "blind" versions of these machines are studied and compared with each other, and the associated classes for multicounter automata, automata with multiplication, and generalized finite automata.Comment: 14 page

    Regular realizability problems and context-free languages

    Full text link
    We investigate regular realizability (RR) problems, which are the problems of verifying whether intersection of a regular language -- the input of the problem -- and fixed language called filter is non-empty. In this paper we focus on the case of context-free filters. Algorithmic complexity of the RR problem is a very coarse measure of context-free languages complexity. This characteristic is compatible with rational dominance. We present examples of P-complete RR problems as well as examples of RR problems in the class NL. Also we discuss RR problems with context-free filters that might have intermediate complexity. Possible candidates are the languages with polynomially bounded rational indices.Comment: conference DCFS 201

    Descriptional Complexity of Three-Nonterminal Scattered Context Grammars: An Improvement

    Full text link
    Recently, it has been shown that every recursively enumerable language can be generated by a scattered context grammar with no more than three nonterminals. However, in that construction, the maximal number of nonterminals simultaneously rewritten during a derivation step depends on many factors, such as the cardinality of the alphabet of the generated language and the structure of the generated language itself. This paper improves the result by showing that the maximal number of nonterminals simultaneously rewritten during any derivation step can be limited by a small constant regardless of other factors

    The Lambek calculus with iteration: two variants

    Full text link
    Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these two versions. In Kleene algebras, this line of calculi corresponds to the *-continuous case. For the second line, we restrict our infinite derivations to cyclic (regular) ones. We show that this system is equivalent to a variant of action logic that corresponds to general residuated Kleene algebras, not necessarily *-continuous. Finally, we show that, in contrast with the case without division operations (considered by Kozen), the first system is strictly stronger than the second one. To prove this, we use a complexity argument. Namely, we show, using methods of Buszkowski and Palka, that the first system is Π10\Pi_1^0-hard, and therefore is not recursively enumerable and cannot be described by a calculus with finite derivations

    Silent Transitions in Automata with Storage

    Full text link
    We consider the computational power of silent transitions in one-way automata with storage. Specifically, we ask which storage mechanisms admit a transformation of a given automaton into one that accepts the same language and reads at least one input symbol in each step. We study this question using the model of valence automata. Here, a finite automaton is equipped with a storage mechanism that is given by a monoid. This work presents generalizations of known results on silent transitions. For two classes of monoids, it provides characterizations of those monoids that allow the removal of \lambda-transitions. Both classes are defined by graph products of copies of the bicyclic monoid and the group of integers. The first class contains pushdown storages as well as the blind counters while the second class contains the blind and the partially blind counters.Comment: 32 pages, submitte

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers
    corecore