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A (full) principal AFL is a (full) AFL generated by a single language, i.e., it is the 
smallest (full) AFL containing the given language. In the present paper, a study is made 
of such AFL. First, an AFA (abstract family of acceptors) characterization of (full) 
principal AFL is given. From this result, many well-known families of AFL can be 
shown to be (full) principal AFL. Next, two representation theorems for each language 
in a (full) principal AFL are given. The first involves the generator and one application 
each of concatenation, star, intersection with a regular set, inverse homomorphism, and 
a special type of homomorphism. The second involves an a-transducer, the generator, 
and one application of concatenation and star. Finally, it is shown that if s and L~a~ are 
(full) principal AFL, then so are (a) the smallest (full) AFL containing {L1 NLJLx in -o~i, 
L~ in .ca} and (b) the family obtained by substituting E-free languages of LP~ into lan- 
guages of ~ .  

INTRODUCTION 

I n  an earlier paper  [4], we abstracted a n u m b e r  of closure propert ies c o m m o n  to 
m a n y  families of formal languages s tudied in  compute r  science. These  closure pro-  

perties, un ion ,  concatenat ion,  e-free Kleene  closure, in tersect ion with regular  sets, 

inverse homomorph i sm,  and  e-free homomorphism,  became the axioms for a family 

of  languages called an  A F L  (short for "abstract  family of languages").  I f  an A F L  

was also closed u n d e r  arbi t rary homomorphism,  then  it was called a full A F L .  I t  was 
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then show that AFL and full AFL coincide with the families of languages related to 
"natural" families of (one-way) non-deterministic acceptors. It was also shown that 
each (full) AFL has certain additional properties customarily proved for each new 
family of languages introduced into the literature. Thus AFL and full AFL are 
unifying concepts in language theory as it relates to machines. 

Since [4], a series of papers have been written [5, 7, 9, 10, 11, 12], dealing either with 
AFL theory per se, or with problems about languages rendered prominent by the 
discovery of AFL. The present article deals further with AFL theory. In considering 
potential theorems, there has always been a problem of obtaining counterexamples, i.e., 
finding (full) AFL with desired properties. (The difficulty is that a (full) AFL is a 
rather complicated family of languages from the point of view of considering all 
members in it.) In most instances to date, well-known (full) AFL previously considered 
in other computer science studies have been used. On a few occasions, however, new 
(full) AFL have been constructed, usually after much travail. These improvised (full) 
AFL were described as "the smallest (full) AFL containing L," where L was some 
explicit set. The purpose of the present work is to study such (full) AFL, i.e., (full) 
principal AFL. In turns out that many of the well-known families of languages are 
(full) principal AFL, e.g., the regular sets, the context-free languages, the recursively 
enumerable sets, the one-way stack languages, and the nested stack languages (the 
last three noted here for the first time). Thus (full) principal AFL are not extremely 
special, esoteric families of languages, but include many of the most important ones. 

The paper itself is divided into four sections. Section 1 defines the language concepts 
to be used and presents several elementary results about (full) principal AFL. 

Section 2 concerns acceptors. It reviews the concept of an AFA (abstract family of 
acceptors) and then gives a necessary and sufficient condition on an AFA in order for 
it to define a (full) principal AFL. The machine characterization is so easy to apply that 
many well-known families of languages can be proved (full) principal as an immediate 
consequence. 

Section 3 is concerned with two simple representations for each language in a (full) 
principal AFL with generator L. The first result is that for L-7~ $, each language in 
the [full] AFL can be represented in the form M((Lc)*) or M((Lc) +) [M((Lc)*)],where 
M is an appropriate type of a-transducer and c is a new symbol, depending on whether 
or not L contains the empty word. The second result is that each language in the [full] 
AFL can be represented in the form h2(hll((Lc) *) c~ R), where c is a new symbol, 
R is a regular set, and h 1 and h2 are appropriate homomorphisms. It is thus similar to 
the Chomsky-Schutzenberger theorem about the representation of context-free lan- 
guages in terms of the Dyck set on two letters. 

Section 4 considers the effect of two operators, "A" and "substitution" on (full) 
principal AFL. The main results are that if ~ and ~W~ are (full) principal AFL, then 
so are (a) the smallest (full) AFL containing {L 1 n LJL1 in -~a, L2 in ~9~.~} and (b) the 
family obtained by substituting e-free languages of ~,r into languages of ~r 
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While the emphasis throughout the paper is on theory, we have tried to focus 
attention on results which would be meaningful for A F L  already in the lkerature. 
Accordingly, we have presented applications to well-known A F L  whenever feasible. 
I t  is our conviction that there is still much basic work to be done on (full) principal 
AFL.  

SECTION 1. PRELIMINARIES 

In  this section we first review some concepts about families of languages. We then 
introduce the concept of concern to us in this paper, namely principal A F L  and (full) 
principal AFL.  Finally, we present several elementary results about these AFL.  

We now recall the concepts of "language" and "family of languages." 

DEFINITION. A language is a set L for which there exists a finite set Z 1 of abstract 
symbols such that lL C ZI*. For each languageL let ZL be the smallest set Z 1 such that 
L_C21". 

DEFINITION. 
where 

(1) 
(2) 
(3) 

A family of languages is a pair (Z,.W), or =W when Z is understood, 

Z is an infinite set of symbols, 

each L in ~ is a language, with ZL C Z, and 

L ~ ~ for some L in .~. 

Henceforth, Z will always denote a given infinite set of symbols, and Z with a 
subscript a finite subset of Z. All symbols given or constructed, and then used in a 
language, will be assumed to be in Z. Also, L and ~qo, with or without a subscript, will 
always denote a language and a family of languages, respectively. 

The  notion of a family of languages is usually too general a concept to obtain 
significant results. In  [4], families of languages having several additional properties 
were introduced and shown to be fruitful for the study of families of languages treated 
in computer science. These families of languages, called AFL,  are the following: 

DEFINITION. An abstract family of languages (AFL) is a family of languages 
dosed  under the operations of union, concatenation, +,2 E-free homomorphism, 8 

i For each set Z' 1 , 271" is the free semigroup with identity E generated by 2:1. Each element 
of 271" is called a word of 271"- 

A + = Ut~>t Ai, where A *+1 = A~A for each i > 1. A* = A + 0 {~}" 
8 A mapping h from 271" into 272* is a homomorphism if h(xy) ~ h(x) h(y) for all x and y 

in 271". If h(x) = E implies x ~ e, then h is said to be r 
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inverse homomorphism, 4 and intersection with regular sets. 5 A ful l  A F L  is an A F L  
closed under arbitrary homomorphism. 

T h e  reader is referred to [4] for motivation and details on AFL.  
In  considering AFL,  we are frequently interested in describing specific A F L  for 

either illustrative or counterexample purposes. Several methods are popular. One is by 
a family of grammars (the left-linear, context-free, or context-sensitive grammars). 
Another is by a family of acceptors (finite-state acceptors or one-way stack acceptors). 
And a third is "as the smallest A F L  containing a given family 5 :  of languages." 
This  leads to the following concept. 

Notation. Let Z be given. For each set of languages 5:, let ~ - ( J )  (o~(S:)) be the 
smallest (full) A F L  containing 50. 

For each 5:, i f ( 5 : )  and ,~(.~T) exist. 
Impor tant  occurrences of ~- (5 : )  and o~(5:) arise when 5:  contains exactly one 

element, i.e., 50 ~- {L} for some L. (In this case, we write ~ ( L )  instead of ff({L}) 
and ~ ( L )  instead of ~'({L}). This  is the situation we shall study in the remainder of 
the paper. Accordingly, we introduce the following concepts. 

DEFINITION. An A F L  ~r is said to be (full) principal if there exists a language L 
such that ~ = i f (L )  (ge, = .~(L)). Then  L is said to be a (full) generator of ~,e. 

Obviously the regular sets form a full principal A F L  and the ~-free regular sets a 
principal AFL.  We shall see that many of the families of formal languages studied in 
computer  science are principal and/or full principal. 

EXAMPLE 1.1. The  Chomsky-Schutzenberger theorem asserts ([3], Theorem 3) 
that  given Z 1 there exist Z2,  a Dyck set D _C Z~*, and a homomorphism h from Z~* 
onto ZI*  which satisfy the property that for each context-free language L _C ZI* a 
regular set R C Z~* can be found such that h(D N R) = L. From this it readily follows 
that the context-free languages form a full principal AFL,  fully generated by the Dyck 
set on two letters. (The Dyck set on one letter fully generates the one-counter lan- 
guages [9].) We shall see later (Example 2.1) that the context-free languages form a 
princepal AFL.  

EXAMPLE 1.2. The  A F L  ~ consisting of all recursive sets is not principal. For, 
suppose ~ is principal. Then  ~ = ~-(L0) for some L 0 in ~ .  Hence, there exists a 
total recursive, strictly increasing function T(n), constructible in the sense of [13], 

4 If h is a homomorphism from Z~* into Z2*, then the mapping h -1 of subsets of 27~* into 
subsets of ZI* defined by h-l(Y) = {x I h(x) in Y} for all Y _C 272* is called an inverse homo- 
morphisrn. 

s A regular set is any set contained in the least class which contains each finite set of words 
and which is closed under union, concatenation, and * 
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such that L o is accepted in T(n) tape space (on a Turing machine). It is straightforward 
to show that for each L in ~'(L0) , there exists k ~ 1 such that L is accepted in T(kn) 
tape space. But there are recursive languages L accepted in 2 r~n~) tape space but  not 
in T(kn) tape space for any k. Therefore ~o is not principal. (Obviously s is not full 
principal, since ~(&o) is the family of recursively enumerable (r.e.) sets.) 

Clearly an AFL  that is principal and full is full principal. 
An obvious generalization of (full) principal AFL  is "(full) finitely generable," 

i.e., s = ~-(50) (s = o~'(50)) for some finite set 5 ~ We shall see below that such 
A F L  coincide with (full) principal AFL.  

LEMMA 1.1. Let L x and L 2 be languages and c a symbol not in 27Lt • 27L2. Then 
~'({L 1 ,L2} ) = o~-(L), whereL = L  1 u cL 2 u (L 2 n {c}), andO~({L1 ,L2} ) = ~ ( L  a u cL2). 

Proof. We give the proof for o~({L1, L2}), the argument ~ ({La ,  L2} ) being similar. 
Since L is in ~({L1 ,  L2}), ~ ' (L)  C ~ ({La ,  L2} ). It thus suffices to show that L~ and 

L 2 are in o~'(L). If  L a contains E, then L~ -----L n 27"1" Otherwise, L 1 = L n 27+1" In 
either case, L 1 is in ~'(L).  Let  h be the homomorphism on 27L, U {C} defined by h(c) = 
and h(a) = a for each a in 27L~. Then  L 2 = h(L (~ c27 +) if ~ is not in L 2 and 
Lz = h(L n (c27+ u {~})) if E is in Lz.  Now h is E-limited 6 on L (~ (c27~ U {e}) and 
hence on any subset. Therefore L z - -  {r is in ~ ( L )  by Corollary 5 of Theorem 2.1 
of [4]. I f  L 2 contains E, then so does L and hence {E} = L n {E} is in o~(L). Then  
L 2 = (L 2 - -  {~}) u {E} is in o~'(L). If L 2 does not contain {E}, then L 2 = L x --  {E} is in 
o~(L). In either case, L 2 is in #-(L). 

Remark. A similar argument shows that if L 1 :#  ~ and L~ 3~ ~b, then 
LlCL 2 U ((L a W Lz) n {~}) generates #'({L1, L2} ) and LxcL2 fully generates o~({La, L2} ). 

From Lemma 1.1, there immediately follows 

THEOREM 1.1. An AFL  .LP is (full) principal i f  and only i f  there exists a finite set 50 
of languages such that .W = ~ (  50) (s = ~ (  50)). 

COROLLARY. I f  ~ ..... 4 are (full) principal AFL,  then so is ~ - ( ~  U ... u 4 )  

u . . .  u 4 ) ) .  

Consider the existence of nonprincipal AFL.  If  27 is countable, then the family of 
regular subsets of 27 is countable and the family of homomorphisms defined on finite 
subsets of 27 is countable. Thus  every member of o~'(L) (~ (L) )  can be obtained f romL 
by a finite number of operations, each chosen from a countable collection of operations. 
Hence o~-(L) and ~ ' (L)  are countable. In other words, if 27 is countable then no un- 
countable AFL  over 27 is either principal or full principal. 

A homomorphism h on 271" is r on L _C 2:1" if there exist k > 0 such that for all w 
inL, ifw = xyz and h(y) = r then [y ] < k. 
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Another situation yielding an A F L  which is not principal is the following special case 
of a well-known result for algebraic systems. 

LEMMA 1.2. Let ~ ,..., SO~ .... be an infinite sequence of (full) A F L  such that 
SOn ~ ~ + l f  or each n. Then U,, ~ is a (full) A F L  which is not (full) principal. 

[Proof. Obviously SO = On ~ is a (full) AFL.  Suppose SO is (full) principal, 
i.e., 5e = ~-(L) (SO = ~ ( L ) )  for some L. There  exists n o such that L is in 4 0 .  
Then  SO = ~-(L) (~q = ~ ( L ) )  C SO% _C SO, o+1C SO, so that SO% = Sono+X, a contra- 
diction.] 

From L e m m a  1.2 and Theorem 1.1 we get 

THEOREM 1.2. Let SO be a countable (full) AFL.  Then SO is not (full) principal if  
and only i f  there exists an infinite sequence of (full) ~ ,..., SOn,... such that SO = O~ 
and ~ ~_ SOn+x for each n. 

Proof. By L e m m a  1.2, it suffices to consider the "only if." Suppose s is not (full) 
principal. Since SO is countable, S ~ - -  {r = {L 1 .... , Ln ,...}. Let  i 1 = 1. Continuing 
by induction, for each m < r suppose that im exists and that ~ n  = o~-({Lit ,..., Li,))  
(SO~ = ~ ( { L q  , . . . ,L, })). Furthermore,  suppose that SOre ~ ~~ 1 for each m, 
1 ~< m < r - -  1. Since SO is not (full) principal, thus by Theorem 1.1, not (fully) 
finitely generable, there exists a smallest integer i~ such that L# is not in SO~-I �9 Let  

= o~-({Lq ..... L#}) (SO = ~ ( { L q  .... , L,,})). Then  SO~_a ~ SO~. Thus  the induction 
is extended. Obviously SO = Om>z SO,~- 

The  method of proof also shows 

COROLLARY. Let 5~ be a countable (full) AFL. Then ~ is not a (full) principal A F L  
i f  and only if  there exists an infinite sequence SOl,..., 0~,~ .... of (full) principal A F L  such 
that SO = Un ~ and for each n, SOn ~ ~+x  " 

As an application of Theorem 1.2, we have 

EXAMPLE 1.3. For each n > 0 let ~ be the ultralinear sets of rank n [6] and 
= g(Sf~). In particular, 6~ is infinite. I t  is shown in [9] that ~ ~ .g~,,+ a for each n. 

Then  ~r = (.Jn ~ is a full A F L  which, by Theorem 1.2, is neither principal nor full 
principal. Each of the families SO~ is full principal [9]. For example, SOl is fully generated 
by 7 (wcwR/w in {a, b}*}. 

7 Let ~R = ~. For al,..., ak in X 1, k > 1, let (al "" ak) R = ak "'" al .  
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SECTION 2. MACHINE CHARACTERIZATION 

In [4], we proved that full AFL (AFL) are the families of languages accepted by 
families of one-way (quasi-realtime) nondeterministic acceptors. In this section we 
show that the property of being (full) principal has a machine counterpart. In parti- 
cular, we prove that an AFL ~ is (full) principal if and only if some family of acceptors 
which accepts ~ meets a certain condition. Using this characterization result, we are 
then able to demonstrate that a number of well-known (full) AFL are (full) principal. 

We first recall some concepts about abstract families of acceptors. 

DEFINITION. An abstract family of (one-way nondeterministic) acceptors, abbreviated 
AFA, is an ordered pair (g2, ~),  or ~ when g2 is understood, with the following 
properties: 

(1) g2 is a 6-tuple (K, 27, F, L f, g), where 

(a) K and Z are infinite abstract sets, and P and I are abstract sets, with/" and I 
nonempty. 

(b) f is a mapping f rom/ '*  • I in to / '*  u {4}. 

(c) g is a function from -P* into the finite subsets of F* such that g(~) = {~}, and 
E is in g(7) if and only if 7 = E. 

(d) For each 7 in g(/~*), there exists an element 1~ in I having the property that 
f(7 ' ,  1~) = 7' for all 7' such that g(7') contains 7. 

(e) For each u in I, there exists a finite set/ 'u _C/~ with the following property: 
If F 1C _~, 7 is in /'1" , and f(7,  u) ~ b ,  then f(7,  u) is in (F 1 u Fu)*. 

(2) ~ is the family of all elements (called acceptors) D = (K1, Zx, 8, %, F), 
where 

(a) K a and 271 are finite subsets of K and Z resp., F is a subset of K1, and qo is in 

(b) 3 is a function from K1 • (271 u {~)) • g(P*) into the finite subsets of 
K x • I such that the set 

Gn = {7 ] 3(q, a, 7) ~ ~ for some q and a} 

is finite. 
Intuitively speaking, K is the set of all possible "states," 27 is the set of all possible 

"inputs," F is the set of all possible "auxiliary" symbols (i.e., symbols used to form the 
auxiliary storage configurations), and I is the set of all possible "instructions." The 
function f selects the next auxiliary storage configuration. The function g is a general- 
ized read head which examines the auxiliary storage configuration to determine the 
symbol or symbols being scanned. Po is the "start" state of the acceptor and F is the 
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set of "accepting" states. 3 is the "move" function. The  reader is referred to [4] for 
further details and explanation. 

We now present the notation which describes the behavior of acceptors. 

Notation. Let ~-- (or ~ where the acceptor D is to be emphasized) be the relation 
on K 1 • 2J~* • F* defined as follows: For a in X~ v {E}, (p, aw, 7) ~-- (P', w, 7') if there 

- �9 �9 t ! i 
e~ist ~7 and u such that ), ,s ,n g(7), (P ,  u) is in 8(p, a, ~), and f(7,  u) o 7 .  Let  ~-- and 
~-  be the relations on K1 • ~'~* • -/"1" defined by (p, aw, 7) ~-- (P, aw, y) and 

. k + l  . t t ct (p, w, 7) ~ - - -  (P ,  w ,  7') if there exists (p", w , 7") such that 

(p, w, 7) ~-  (p", w", 7") ~ (P', w', 7'). 
�9 t Let ~-  be the transitive, reflexive extension of ~---, i.e., (p, w, Y)w--(p, w', 7') if 

k . t t (p, w, 7) ~ (P ,  w,  7') for some k ~ 0. 
An acceptor yields a set of words as follows. 

DEFINITION. Let ~ be an AFA. For each acceptor D = (/s X1,3,  qo,F) ,  let 
L(D), called the set accepted by D, be the set of words 

{w in 271"/(p0, w, E) ~-- (p, ~, e) for somep inF) .  

Let  50(~) = {L(D)/D in ~}. 
Another concept from [4] of concern to us is the following. 

DEFINITION. Let  k be a nonnegative integer and ~ an AFA. Let  ~k  * be the set 
09 

of all D in ~ such that (p, E, y) ~-  (p', E, 7') implies l ~< k. Let  L~~ =- 0~=o ~~ 
Each L in ~qet(~) is called quasi-realtime. 

The  basic connections between AFA and AFL are the following results proved 
in [4]: 

(A) For each AFA ~ ,  50~(~) is an AFL containing {E} and 50(~) is a full AFL.  
(B) For each AFL 50 containing {~} (full AFL 50), there exists an AFA ~ such 

that 50 = 50~(~) ( 5  ~ = 50(~)). 

We now turn to the problem of characterizing (full) principal AFL  by AFA. First 
we need several definitions. 

DEFINITION. Let (/2', ~ ' )  and (/2, ~ )  be AFA, with/2 '  = (K', X, F', I ' , f ' ,g ' )  and 
/2 = (K, X, F, ! , f ,  g). Then  (/2', ~ ' )  is said to be a sub-AFA of (/2, ~ )  if 

(a) K' C_ K, F' C_ F, andI'__CI; 
(b) f '  is the function f restricted t o / " *  • I ' ;  
(c) for each u in I ' ,  F u' = F~ n F'; and 
(d) there exists H _C F* such that g ' ( r )  = g(7) • H for all y in F '*.  

57I/4/4-z 
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DEFINITION...~ is finitely (t-) encodable if there exists a sub-AFA 9 '  such that 
.W(9) = s (-W*(9) = L, Ct(9'))  and I '  and g'(F'*) are finite. 

We now present a sequence of lemmas leading to the main result that an A F L  
containing {~} is (full) principal if and only if .W --~ ~ * ( 9 )  (.W ---- L,~'(9)) for some 
finitely t-encodable AFA (finitely encodable AFA) 9 .  

LEMMA 2.1. I f  L, Ct(9) (.W(9)) is (full) principal, then 9 is finitely t-encodable 
(finitely encodable). 

Proof. We shall prove the result for &a(9), an analogous argument holding for 

Let  &r be full principal. Thus  L ~ ' ( 9 ) =  ~ ( L )  for some L in ~ ( 9 ) .  Then  
L = L(D) for some acceptor D ~- (K1, Z'l ,  3, q0, F). Let  

I 1 = {u inI/(p,  u) in 3(q, a, y) for somep,  q, a, y} u {1~ [y  in GD}. 

Since 3 is finite-valued and GD is finite, I 1 is finite. Let  F 1 be the smallest subset of F 
such that F,, _C F 1 for each u in I 1 and such that G D _C/1". Clearly F 1 exists and is 
finite. Let  f '  be the function f restricted to /"1" • 11 . For each y in FI* , let 
g'(Y) = g(Y) n G D . Let (/2', 9 ' )  be the AFA where ~2' = (K, X , / ' 1 ,  I 1 , f ' ,  g'). Then  
.W(9')  is a full A F L  containing L, so that ~ ( L )  ----- &a(9) D_ ~ ( 9 ' )  D_ ~ ( L ) .  Therefore 
~ ( 9 )  = .W(9').  Since I 1 and g'(Fl* ) C Go are finite, (/2, 9 )  is finitely encodable. 

T h e  next lemma concerns special sets and is used in the proof of the main result. 
First though, we need some additional notation. 

Notation. Let (/2, 9 )  be an AFA, wi th /2  = (K, 27, F, I ,  f ,  g). For each n >~ O, let 
F'* be the function on F*  • I • .-- X I (n times) defined as follows: Let  F~ = Y 
for each 9' in F*. For n > 0, 9' in F*, and/21 . . . .  , u~ i n / ,  let F~(y, u I ..... u,) = 6 if 
Fn-l(y, u 1 ,..., u~) = ~b and let F~(y, Ul,... , un) = f(F'~-l(y, ul, . . .  , un_l) , un) otherwise. 

Thus  Fn(y, u I ..... u~) is the end result of starting with y on the storage tape and 
applying u I .... , u~ in sequence. 

Notation. Let (s 9 )  be an AFA, wi th /2  ---- (K, 27, F , / ,  f ,  g). Suppose that I and 
g(F*) are finite. Let  h A and h 2 be one to one functions on I and g(F*) resp., into 2] such 
that  hi(/) r3 h2(g(F*))= 4- Then  271 denotes hi(I), 272 denotes h~(g(F*)), and L ~  
(actually, L~.nl.h2) denotes the set of all words of the form h2(E ) or 

where n > /1 ,  u t ,..., u n are in / ,  Yi is ing[Fi(E, u 1 ,..., ui) ] for all i, i ~< i < n, and Yn = ~. 
Thus,  in addition to h2(r L~  contains the encoding of each sequence 

~0, u l ,  Ya ,..., u~, y~, where u 1 ,..., u n are instructions and ~0 ,..., ~ are the consecutive 
(under the instructions) storage information configurations, with Yo =Yn----~.  In  
other words, L ~  represents the behavior of the storage information configurations 
(interspersed with appropriate instructions) during any possible accepting computation. 
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F o r  each A F A  (~2, ~ )  such tha t  I and g(F*) are finite, there  obvious ly  exist an  
infini te n u m b e r  of pairs  (ha,  h2) sat isfying the above condit ions.  

LEMMA 2.2. I f  ~ is an A F A ,  with I and g(F*) finite, then L ~  is in .~q~t(~) for each 
L ~ .  

Proof. Le t  K 1 = {q0, q l ,  q2) be a set of three  dis t inct  symbols  of K .  L e t  

D = (K1,271 w 272,5, q0, F1), where  F I = {qa} and 3 is def ined as follows: 

(1) 8(%, ,) = {(qa, 13}, 
(2) 8(q I , ha(u ), ~,) = {(qg, u)} for all ~, in g(F*) and u i n / ,  and  

(3) 8(q2, h2(), ), ~,) = {(qa, l v)) for all ~ in g(F*). 

Clearly D is in ~ 0  t and L ~  = L(D) is in ~ ( ~ ) .  

Notation. Given  L ~ ,  let T be a finite subset  of  27 such tha t  T n (2:1 t3 Z'9) = r  

Deno te  by  h r (actually,  h r .%h, )  the  h o m o m o r p h i s m  on ( T  td 271 u 279)* def ined by  

hT(a ) = E for each a in T and hr (a )  = a for each a in 272 td 279. Deno te  b y L  r (actually,  
the set hra(L~).  Deno te  by  /~r (actually,  //r.nvh~) the  h o m o m o r p h i s m  on 

(T'~unl"za ~U 272)* defined by  ~ r ( a ) = a  for each a in T and / / r ( a ) = E  for each a in 

272 w 272. F o r  each acceptor  D = (K1 ,  T, 3, qo, Fa) in ~ denote  by  Hz) (actually,  

HD.~.hx.h2) the r ight- l inear ,  context- f ree  g r ammar  s ( K  1 t9 Z' 1 t3 272 u T t3 {a), 

"Y'I w 272 w T, PD, a), where  a is a new symbol  in Z and 

PD ----- {a ~ qo} W {q ~ ah2(y) ha(u) q'/(q', u) in 3(q, a, y)} 
v {q --* h2(E)/q in F1}. 

Deno te  by  R e  (actually RD.e .%h,)  the  set 9 L(HD). 
T h u s  LT consists of  all words  in L ~  ob ta ined  by  inser t ing  a rb i t ra ry  words  of  T* 

into words  of  L ~ .  T h e  h o m o m o r p h i s m  //T preserves  e lements  of  T and erases all 
o ther  symbols .  T h e  set RD consists of all words  of  the  fo rm 

aah2(~0) hx(ux) "'" a ,  h2(n_l )  ha(u,) h2b,,), 

where  ),, = ~ and D has a sequence of states q0 ,..., q , ,  qn in F 1 , wi th  (q~, ui) in 
~(qi-a, ai ,  Yi-a) for each i, 1 ~< i ~< n. 

Since H o is r ight  l inear,  R o is regular  set [2, T h e o r e m  6]. 

a A context-free grammar is a 4-tuple G = (V, 271, P, ~), where V is a finite set of symbols, 
271 _C V,  a is in V - -  271, a n d  P i s  a finite set of ordered pairs (~:, y), with ~ in V - -  271 and y 

in V*. Each pair (~, y) is written ~: -* y. A context-free grammar is right linear if each production 
in it is of the form ~ --~ z or ~ --+ zt~, where z is in 271" and t~ is in V - -  271 �9 

a For each context-free grammar G = (V, 271, P, a), write u ~ v if there exist ul u2, u3, 
and ~: such that u = ul~u2, v = ulu3u ~ , and ~ --~ u 3 is in P. Let ~ * be the reflexive transitive 
closure of ~ .  Let L(G) -- {w in 271"/a ~ * w}. L(G) is called the context-free language generated 
by G or by P. 



318 GINSBURG AND GREIBACH 

LEMMA 2.3. LeD) = lir(L r C~ 17o) for each D = (K1 ,  T, 3, qo, F1) in ~ ,  and i f  D 
is quasi-realtime, then li T is e-limited on L r C~ R D . 

Proof. Informal ly ,  L ~  contains  all sequences  e, Ul,  71 ..... u s ,  7n = e in the 

encoded  fo rm h~(e) hl(Ul) h2(71) "" hi(us) h~(Tn), where  

r F l e e ,  Ul) . . . . .  F n - l ( e ,  Ul  , . . .  , U n _ l )  , F n ( e ,  u I . . . .  , u n )  = E 

is a sequence of auxi l iary  s torage configurat ions  for some possible  accept ing compu ta -  

t ion  of  some acceptor  o f ~  and 7i is in g(F~(~, u I ,..., u~)) for  each i. Also,  L r  is L ~  with  
all poss ible  inpu t  s t r ings of T* inser ted at all points .  T h e  set R o consists of  all words  

alhfl(7o) hl(Ul) "'" anh2(7s_l) hl(Un) h2(Tn), 

where  7,n = e and D has a sequence of states qo ,..., qn, qs an accept ing state, wi th  

(q~, ui) in $(q~-1, a~, 7i-1) for each i. T h u s  L r n Ro  combines  bo th  auxi l iary  storage 
and s tate  t rans i t ion  restr ict ions.  T h e  h o m o m o r p h i s m  l i t  then  erases all symbols  not  

the  input  of a computa t ion ,  leaving LED). 
Formal ly ,  we first prove tha t  LeD) C_ l i r ( L r  C~ Ro). T o  this  end,  let  w be in LED). 

Suppose  w = e and q0 is in F 1 . T h e n  cr =~ q0 ~ h2(e), so tha t  ha(e ) is in R D . Since 
h~(e) is i n L ~ ,  it  is i n L r ,  thus  i n L  r n R D . T h e n  e is in lit(ha(e)). N o w  suppose  ei ther  

w = e and qo is not  in F 1 , or  else w 5& e. T h e n  there  exist n ~ 1, a l , . . . ,  a s in T U {e}, 

Pl  ,..., P~ in K 1 ,  wi th  Ps in F 1 ,  and 71 ..... 7s-1 in F *  such tha t  

(q0, a s""  an ,  ") ~ (Ps ,  a2"" a s ,  ~'1) 
. . .  

(Pn-x, as, 7n-1) 
~- (p . , . ,  e) 

and w = aa "'" as �9 Hence  there  exist u a ,..., us in I and  Yx ,..-, Ys-~ in GD such that  

f ( e ,  Us) = 71,  f ( T i ,  U,+~) = 7~+X for 1 ~< i ~< n - -  2, f ( T s - ~ ,  u , )  = ~, y~ in g(7~) for  
1 ~ < i ~ < n - -  1, ( p l , U l )  in 3(q 0 , a  1 ,~) ,  and (Pi+l,Ui+l) in 3 ( P i , a i + l , Y i )  for 
1 ~< i < n - -  1. Since 7i = F i (  e, ul  .... , u,) for  1 ~< i ~ n - -  1 and e = Fs(E, ua ,... , u,),  

it  follows tha ty~ is ing(F~(e, ?d I , . . . ,  g/i)) for  1 - ~  i ~ n - -  1 and {e} = g(FS(e, us ,..., u,)). 
There fo re  

h~(,) hi(u1) h2(yl)  "" hi(us) h~(,) 

is in L ~ .  Hence  

w' ---- a~h~(e) h~(u~) a~h~(yl) hl(U~) "'" ash~(y~_~) hl(U~) hz(~) 

is in L r .  Obvious ly  w' is in RD,  so tha t  w' is in L ~  C~ RD,  and w = lir(w'). T h u s  

Z,(D) _c lir(~r c~ Ro). 
T o  see the  reverse inclusion,  let w be in liT(LT ~ R~). Suppose  w = e and h~(e) 
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in is R , .  Then q0 is in F1,  so that ~ is in L(D). Suppose either w = ~ and h2(~ ) is not 
in RD, or else w :/:  ~. Then  there exist n ~ 1, ul ,..., un in I, Yl ,..., Yn-1 in g(F*), 
and al ,..., an in T w {e} such that 

w' = alh2(e) hi(u1) a2h2(yx) .-" h~(un) h2(e), 

w = a I "- an =//T(W'), and w' is i nLz  ~ R D . Since w' is inLr ,  there exist ~1 ,..-, ~'n-1 
such that YI = f(e, Ul) , Yi = Fi@, Ul ,'-', ui) for 1 ~< i ~< n - -  1, E = F~(,, u I . . . .  , Un) , 
and Yl is in g(~,~) for 1 ~< i ~< n - -  1. Since w' is in Ro,  there exist Pl .... , p ,  such that 
qo --~ aah~(e) ha(ua) P~, P* ---> a,+lh2(y~) ha(u~+a)P,+a for 1 < i ~< n - -  1, ~nd p ,  --+ ha(, ). 
I t  follows from the definition of Ro that p ,  is in F 1 , (Pl ,  ul) is in 8(q0, a l ,  e), and 
(Pi+l, ui+l) is in ~(p~, ai+l,Yi) for 1 ~< i ~< n --  1. Hence 

(%, a~-..  a,~, e) ~ (p~, a~"" a~,  7~) 

(p,_~, an, ~._~) 
(p.,  ,, e) 

so that w = ax--- a~ is inL(D). Thus / / r (Lr  c3 Rn) C L(D), whenceL(D) = / / r ( L  r n Rn). 
Suppose that D is quasi-realtime. Then there exists k >~ 0 such that D has at most k 

consecutive E-moves. Thus, for w = a x -.. an in L(D), at most k consecutive a i can 
be ~. Hence/~r  maps at most 2(h + 1) consecutive symbols of z~' into ~. Therefore 
/ /r  is E-limited on L r ~ R e ,  completing the proof. 

Lemma 2.3 states that a language recognized by a member D of an AFA having I 
and g(F*) finite can be expressed as the homomorphic image of the intersection of (a) 
a regular set which encodes the finite state control of D, and (b) a member of a fixed 
family of languages, each of which encodes the action of the AFA on the auxiliary 
storage. Thus  Lemma 2.3 resembles the Chomsky-Schutzenberger characterization 
of  the pushdown acceptor ( =  context-free) languages given in Example 1.1. In  parti- 
cular, it can be shown that each context-free languageL is of the form hz(h~l(K2) n R), 
where h 1 and h2 are homomorphisms, R is a regular set, and K z C_ {al, al E, a2, aze} * 
is the context-free language generated by the rules ~: --~ al~al ~r, ~ ~ a=~a2 E, ~ ~ ~ ,  
and ~: ~ e. In passing, we remark that for many welt-known AFA tee proof of Lemma 
2.3 can be modified to exhibit an "intuitively obvious" language as a generator for 
the A F L  associated with the AFA. Among other results, we can modify the argument 
in Lemma 2.3 to show that (1) the Dyck set on two letters is a (full) generator for the 
context-free languages, and (2) the Dyck set on one letter is a (full) generator for the 
1-counter languages. [Also, see example 2.2.] We shall give the details elsewhere. 

We are now ready to characterize (full) principal A F L  in terms of AFA. 

THEOREM 2.1. Let (12, ~ )  be an AFA. Then St'(.@)(oWt(~)) is full principal (prin- 
cipal) if and only if (12, ~ )  is finitely (t-) encodable. 

Proof. By Lemma 2.1 it suffices to show the "if." 
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(a) Suppose (D, 9 )  is finitely encodable. Then (D, ~)  has a sub-AFA (g2', 9 ' ) ,  
where s ~- (K', Z, I", I ' , f ' ,  g'), with I '  and g'(F'*) finite, such that .L'~ -=- .LP(9'). 
Consider L~, for some appropriate functions h I and h , .  Thus, L~, _C (Z 1 t3 Z2)*. 
By Lemma 2.2, L~, is in ~q~ot(~,) _C ~ (~ ' ) .  Since s is a full AFL [4], 
o4~(L~,) _C s  ---- .~r We shall show the reverse inequality. 

Let L be in s with L _C T*, T _C Z finite. For each a in T, let d be a distinct 
element in Z -- (Z1 u Z 2 u T). Let T = {~/a in T} and let a T be the homomorphism 
from T* into T* defined by at(a) = d for each a in T. Then (Zx t3 Z,) t~ T --= ~ and 
/~- --= at(L) is in .s Let D ---- (Ka, T, 3, q0, F1) in ~ '  be such that/7, -- L(D). By 
Lemma 2.3,/~,----hT(h~(L~,) n RD). Since RD is regular, [. is in o~(L~.). Hence 
L = arl(s is in o4(L~,), so that o4(L~.) = s 

(b) Suppose (g2, 9 )  is finitely t-encodable. Then (g?, 9 )  contains a sub-AFA 
(~2',~'), where g2'----(K',Z, I " , I ' , f ' , g ' ) ,  with I '  and g'(F'*) finite, such that 
.o~~ = ..q't(~'). It readily follows that o~-(L~,) _C .o.qP*(9'). To see the reverse inequal- 
ity, we use the notation in (a). Let L be in s with L C T*, T C Z finite. Since 
ar  is an ~-free homomorphism, [, = at(L) is in s and //~, is ~-limited on 
h~(L~,  ~ RD). Thus/~, hence L, is in ~'(L~.). Therefore s = o~-(L~,), com- 
pleting the proof. 

Since s is a full AFL (.s is an AFL containing {e}) if and only if 
= ~ ( ~ )  (s = s for some AFA 9 ,  we have 

COR0~LAg~ 1. An AFL .s (containing {~}) is full  principal (principal) i f  and only i f  
is finitely (t-) encodable for every AFA N such that ~ = .~q~(N) ( s = s 

COROLL~mV 2. An AFL ~ (containing {e}) is full  principal (principal) i f  and only i f  
.oq(' = .oq~(~) (.s = .,q~'(~)) for some finitely (t-) encodable AFA 9 .  

Now for each AFA ~ and each D in 9 ,  there exists a homomorphism h and a D' 
in N 0' such that h(L(D')) ~-L(D) [4]. Thus .LP(N) is the closure of s under 
arbitrary homomorphism. This yields 

COROLLARY 3. A ful l  AFL ~ is principal i f  and only i f  there exists a finitely 
t-encodable AFA N such that ~ = .~(~)  = s 

We conclude the section with several applications of Theorem 2.1 to known AFL. 

EXAMPL~ 2.1. Let N~ be the AFA formalization for pda. Since the context-free 
languages form a full principal AFL, N~ is finitely encodable by Theorem 2.1. In 
particular, using the notation ~~ of Example 1 of [5], let 9 '  be the sub-AFA of N~, 

x0 We frequently present instructions as words over some alphabet, instead of as abstract 
symbols.  This  is done to stay as close as possible to the customarily used symbolism of certain 
aeceptors. I f  an instruction is given as a word w in V* for some alphabet V, then we may formally 
conceive of  the instruction as the abstract symbol i~. 
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with F '  = {A, B}, H = {A, B, e}, I '  = F 2 v F u {e}, g ' ( y A )  --  {A}, g ' ( y B )  = {B}, 
g'(E) = {e}, if(e,  u) = u, and f ' ( y A ,  u) = yu  = f ' ( y B ,  u) for all y in F* and u in I.  
Now every context-free language is accepted by a pda which (c~) has at most two storage 
symbols, and (/3) never increases the length of the auxiliary storage by more than one. 
Thus  ~ ( ~ ' )  = 5 r  Since I '  and g'(F'*)  are finite, ~ is finitely eneodable via ~ ' .  

I t  is known [8] that every context-free language is accepted by an c-free pda, thus 
by a pda ~ t .  Therefore L~a(~) ~- .L~at(~). Moreover, for every quasi-realtime pda D 
there clearly is a quasi-realtime pda D'  in ~ '  such that L(D)  = L(D') .  Thus  ~ is 
finitely t-encodable. By Theorem 2.1, the context-free languages form a principal 
AFL.  I t  can be shown, although not done here, that the Dyck set K 2 is a generator, as 
well as a full generator, for the context-free languages. 

EXAMPLE 2.2. Let  ~ be the family of one-way (nonerasing) stack acceptors as 
defined in Example 4 of [4]. Let  ~ '  be the sub-AFA of ~ in which F '  ---- {A, B, 1 }, 
H ~ {A, B, e}, and I '  ----- (F") 2 U F" u {e, + ,  - - ,  0}, with F"  ---- {A, B}. I t  is not 
difficult to see that for every (nonerasing) one-way stack acceptor D there is a one-way 
(nonerasing) stack acceptor D'  satisfying (~) and (fl) in Example 2.1 and such that 
L(D' )  = L(D).  Furthermore,  D'  is quasi-realtime if D is. Hence ~ ( ~ )  = ~ ( ~ ' )  and 
s -= .oget(~'), so that ~ is finitely encodable and finitely t-encodable. Therefore 
the one-way (nonerasing) stack languages form a full principal A F L  and the one-way 
(nonerasing) quasi-realtime stack languages form a principal A F L  (which is not full 
by  the corollary to Theorem 1.1 of [10]). 

In  connection with the remark made prior to Theorem 2.1, the proof of Lemma  2.3 
can be modified to exhibit an "intuitively obvious" language as a full generator 
(generator) for the (quasi-realtime) one-way stack acceptor languages. This  fuU 
generator (generator) is the set L o C_ {a, a E, a L, a R, b, b e, b r, bR} * which consists of all 
words a a --- a k where, interpreting x as "add x to the stack," x e as "erase x from the 
stack," x L as "move the pointer from the right of x to the left of x," and x R as "move 
the pointer from the left of x to the right of x ,"  x in {a, b}, Fk(e, a 1 ,..., ak) = e, that is, 
the word a I --- ak describes the action on the auxiliary storage as an acceptor makes a 
sequence of moves, starting and ending with empty storage. For example 
aaaebbLbRbea e is in L 0 . We shall present the details elsewhere. 

EXAMPLE 2.3. Let  ~ be the AFA defined as follows. Let  P be an infinite set such 
that P (h{1  , r $, - -  1,0, 1} ----q~, and let 

F = P u {1, r $} and I ---- _P*$ W {e) td {--  1, 0, 1} u r 

Le t  g be defined by g(e) = {e), g ( x Z l y  ) = {Z}, and g ( x Z $ 1 y  ) ---- {Z$} for all Z in 
/~U {r and x , y  in (F  - -  {1 })*. L e t f b e  defined as follows (for all xy in ( / ' - -  {1 })*, 
x :J: e, and u in -P*): 
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(a) f(e ,  r = r a n d f ( x Z l y  , r = xr  for all Z in _Uk) _US. 
(b) f ( x Z $ 1 y ,  uS) = xu$1y for all Z in F. 
(c) f (xr  E) = x Z l y  and f ( r  E) = E. 
(d) f ( x Z $ 1 y ,  --  1) = xq Z$y  and f ( x Z q y ,  - -  1) = x 1Zy for Z in _P vO {r 
(e) f ( x Z l y ,  O) = x Z l y  for Z in F. 
(f) f ( y ' Y 1 Z y ,  1 ) = y ' Y Z q y  and f ( y ' Y q Z S y ,  1 ) = y ' Y Z $ 1 y  for all 

in _P V){r and y '  in ( F -  {1 })*. 

The  family ~ is the AFA of nested stack acceptors (nsa) defined in [1]. li 
Let  9 '  be the sub-AFA where 

Y, Z 

F ' = { A , B , r  O, 1}, H = { A , B , r 1 6 2  

and TM 

I '  = {r u [ < 2, u in {A, B}*} u {E, - -  1, 0, 1} U {uS/] u [ ~< 2, u in {A, B}*}. 

I t  can be shown that 5r  ---- oLP(~) and .LPt(~ ') = ~ t ( ~ ) .  Consequently the (quasi- 
realtime) nsa languages form a full principal (principal) AFL.  

EXAMPLE 2.4. Since each Turing acceptor is simulated by one whose auxiliary 
storage contains just the blank symbol, the pointer symbol, and two other symbols, the 
r.e. sets form a full principal AFL.  Consider the problem of whether the r.e. sets form 
a principal AFL.  Let 27----{a I .... , a i ,...} and let h be the homomorphism on 27* 
defined by h(ai) ~- alia2 for each i. Let  Z7 n --~ {a 1 ,..., an} and let L 1 ,..., L i ,... be an 
enumeration of the r.e. sets such that L n C Z,n* for each n. For each n, let 7(n) be a 
Godel number  assignedLn. T h e n L  = {a~tn)a2h(w)/w i nLn ,  n / >  l} u {E} is an r.e. set 
in {al ,  a2}*. For each n let Mn be a gsm, c-limited on TM {al,  a2}*, that maps a~tn)a~ 
into E and then decodes alias as ai for 1 ~ i ~< n. Clearly L n = M~(L ~ a'((~)a~27~*). 
Then  L ~ a~a(n)a2272 * is in o~-(L). Since an c-limited gsm maps each language in an 
A F L  containing {E} into a language in the A F L  by Corollary 4 of Theorem 2.1 of [4], 
L n is in o~'(L). Therefore o~-(L) is the family of r.e. sets, i.e., the r.e. sets form a principal 
AFL.  

SECTION 3. REPRESENTATION THEOREMS 

By definition, o~'(L) and ~'~(L) are the smallest A F L  and full AFL,  resp., containing 
L. As such, each set L '  in #-(L) (~ ' (L))  is obtained from L by a finite number  of  
applications of the closure operations of a (full) AFL.  For many purposes, this method 

ix This definition differs trivially from the one in [1] mainly because AFA acceptors start 
with empty storage whereas the acceptors in [1] start with #Zo$] for some fixed Z0. 

1~ For each word x, [ x ] denotes its length. 
a3 See [4]. 
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of representing an element in i f (L )  (~ (L ) )  is extremely awkward to apply. In the 
present section, we shall give two representations for each such language. Specifically, 
we shall show that each set L' in :~-(L)(,~(L)) can be represented in the form 
(i) M((Lc)*) for some appropriate "transducer" M, and in the form 
(ii) h~(h~l((Lc)*) c~ R), where R is a regular set, c is a symbol not in ZL, and h I and 
h 2 are appropriate homomorphisms.  

In  order to present the first representation theorem, we recall some notions about 
a-transducers. 

DEFINITION. An a-transducer is a 6-tuple M = (K, Za,  Z'2, H, po ,F ) ,  where 

(1) K, Z1,  and Z 2 are finite sets (of states, inputs, and outputs, resp.). 
(2) H is a finite subset of K • 2"1" • 2:2* • K (the moves). 
(3) Po is in K (the start state). 
(4) F _C K (set of accepting states). 

If  H C_K • 2"1" • Z2+ • K, the M i s  called E-free. 
The  moves of an a-transducer are described by the following symbolism: 

Notation. Let ~-- and ~-  be the relations on K • ZI* • Z~* defined as follows: 
Let  (p, xw, zl) ~-- (q, w, z2) if (p, x, y, q) is in H and z~ = zly.  Let ~-- be the reflexive 
transitive closure of ~---. 

In particular, (p, w, z) ~-  (p, w, z) for all (p, w, z) in K • 2:1" • Z2*. 
The  triple (p, w, z) represents the fact that M is in state p, with w the input still 

* ! t to be read, and z the accumulated output. (p, w, z) F-- ( p ,  w ,  z ')  means that M can go 
from (p, w, z) to (p' ,  w', z ')  by a sequence of zero or more elementary moves. 

The  a-transducer effects an operation as follows: 

DEFINITION. Let M = (K, Z 1 , Z2, H, p0, F)  be an a-transducer. For each word 
w in ZI* , let M(w) = {z/(po, w, e) v:- (p, e, z) for s o m e p  inF}. For every W_C Zx* , let 
M(W) = (3~,inw-M(w). The  mapping M from 2 zl* into 2 z** so defined is called an 
a-transducer mapping. 

Notation. For each family ~ '  of languages let j ] ( c p )  [ ~ ( ~ ) ]  be the family of all 
sets M(L), where M is an [e-free] a-transducer and L is in ~r I f  ~ = {L}, then we 
write rid(L) [dg(L)] instead of d [ ( ~ )  [d/](~)].  

Note that ~ l ( ~ ' )  is undefined if ~ contains just the language ~. 
We shall need the following result which, in essence, has been proved elsewhere. 

PROPOSITION 3.l. For each family ~ of languages, 

d](.Y ~) [ . /d(~)]  = {h2(h~'(L ) (~ R)/R regular, L in co, hi and h 2 

homomorphisms (with h 2 e-free)}, 
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and is the smallest family containing ~ and closed under (,-free) homomorphism, inverse 
homomorphism, and intersection with regular sets. 

Proposition 3.1 follows from Remark 2 on page 8 of [4] (union with {~} is not 
needed here) and from the fact that the composition of (,-free) a-transducers is an 
(~-free) a-transducer. 

We now turn to the first representation theorem of a principal AFL.  We need three 
lemmas. 

LEMMA 3.1. For each nonempty language L, J I (L )  (..,d(L)) is closed under union. 

Proof. I t  suffices to show the ~t'(.2 a) case only. Let  M 1 = (K1,271,273,/-/1, Po, F1) 
and M 2 = (Ks ,  271,272,/-/2, qo, Fa) be E-free a-transducers. Without loss, we may 
assume K 1 n K 2 = 4. Let  r 0 be a new symbol. Let  M z = (Ks ,  271,272,//3,  r0, Fs), 
where K s = K 1 LP K S L) {ro} , F s = F  1 L) F 2 L) {ro/Po i n F  1 or q0 inFa} , and 
H s ----- H t L) H a L) {(r0, u, v, P)/(Po, u, v, p) in//1} L) {(r0, u, v, q)/(%, u, v, q) in//2}. 
Then  M s is an ,-free a-transducer and Ms(L ) = MI(L ) L) Ma(L ). Thus  d4'(L) is closed 
under  union. 

We need to consider certain kinds of a-transducers. 

DErImTION. An a-transducer M = (/s Z1,273, H, Po, F)  is said to be ,-output 
bounded if there exists k ~ 0 such that for each sequence 

( P l '  W l '  ")  b - - " "  I'-- ( P r + l  ' '/'Or+l ' ~) '  

r ~ k. M is said to be 1-bounded if H C K 1 • (271 u {,}) • (272 t3 {,}) • K 1 . 
Thus  M is , -output  bounded if there exists k ~> 0 so that M never has k + 1 

consecutive E-output moves. M is 1-bounded if it only reads and outputs words of 
length at most one. 

LEMMA 3.2. For each (E-free) a-transducer M,  there exists a 1-bounded a-transducer 
(which is ,-output bounded) M 2 = (Kz , 271, Za , Ha,  % ,  Fa) such that Ma(L ) ~ MI(L ) 
for every language L. Furthermore, there is no sequence of elements (qo , ux , vx , qx),..., 
(q, ,  u ,+l ,  v ,+l ,  (*) qt+l) in H a such that v i = ~ for each i and qt+l is in F z . 

Conversely, for every ~-output bounded a-transducer M S satisfying (*), there exists an 
E-free a-transducer M t such that MI  ( L ) = Ma( L ) for every language L. 

T h e  proof of the first part of Lemma  3.2 follows by adding additional states, in the 
obvious manner,  so that in a move only elements of 271 L) {a} are read and elements of 
272 L) {+} are output. The  proof of the last part  follows by generalizing, in a straight- 
forward manner, the argument in Corollary 4 on page 7 of [4]. We omit the details. 



PRINCIPAL AFL 325 

LEMMA 3.3. For each language L and each symbol c not in ZL,  ~ ( (Lc)* )  and 
~( (Lc)*)  are closed under + ;  and if L @ 6, then ~ ( ( L c )  +) is closed under +. 

Proof. I t  suffices to give the proof for Jl((Lc)*). 
Let 21'/1 = (K1, 272, s / / I ,  P0, F1) be an e-free a-transducer. Le t  

M2 = (/s s s H s ,  q0,Fs) be a 1-bounded, e-output bounded a-transducer 
satisfying (*) in Lemma 3.2 and such that Ms(U ) = MI(U ) for every language U. 
We shall construct a 1-bounded, c-output bounded, a-tranducer M 3 satisfying (*) of  
L e m m a  3.2 such that Ms((Lc)* ) = [MI((Lc)*)] +. Hence there will exist an e-free 
a-tranducer Ma such that M4((Lc)* ) = Ms((Lc)* ), so that M4((Lc)* ) =Ma((Lc)* ) 
will be in d4((Lc)*). 

To do this let q be a new symbol for each q in K 2 . Let  

Ms = ( Ka , Z~ , s , H3 , qo , F2), 

where K a = K 2 t.){3/q in K2} and H a contains all 4-tuples of the following form: 

(1) (qi,  U, v, q2) if (qa, U, v, q2) is in H s . 
(2) (ql ,  c, v, %) if (ql,  c, v, q2) is in H s for some q~ in F s . 
(3) (qi,  c, v, 32) if (qx, c, v, qs) is in H s and qs is not in F 2 . 
(4) (3~, e, v, qs) if (ql,  e, v, qs) is in H s.  
(r) (31, e, v ,%)  if (q~, e, v, q2) is in H s and qs is in F 2. 

Informally, the a-transducer M a operates as follows. On reading the last c in a word 
of the form wacw2c .." w~c, M a either simulates M 2 (by (1)), or resets at q0 if M s goes 
to an accepting state (by (2)), or simulates M 2 in marked states so that if e-moves take 
M2 to an accepting state, then M 3 resets to qo (by (4) and (5)). Clearly M~ is 1-bounded 
e-output bounded, M3((Lc)* ) = Mz((Lc)*) +, and M 3 satisfies (*) of Lemma 3.2. 

We are now ready for the first representation result. 

THEOREM 3.1. Let L be a language and c a symbol not in ZL . Then 

~ - ( L  w {e}) - ~((Lc)*) and  ~r  = ~r  

I l L  ~ 6, then o~r(L -- {e}) = dg((Lc)+). 

Proof. It  suffices to consider the argument for o~-(L k){r Since (Lc)* is in 
o~'(L k) (e}), .~[((Lc)*) G o~(L u {e}). Consider the reverse containment. Obviously 
there exists an e-free a-transducer M 1 such that MI((Lc)* ) = L  u{e}. Hence 
~/ '(L u {e}) _C ~'((Lc)*).  Now dg((Lc)*)is  closed under union by Lemma 3.1 and 
under + by Lemma 3.3. By Proposition 3.1, dg((Lc)*) is closed under e-free homomor-  
phism, inverse homomorphism, and intersection with regular sets. By Lemma  I of [12], 
~[((Lc)*) is an AFL,  so that ,~'(L u {e}) C d/d((Lc)*). Thus  ~-(L U {e}) =s/g((Lc)*). 

We now give a second representation for ~ ( L ) ( ~ ( L ) ) ,  this in terms of homo- 
morphism, inverse homomorphism, and intersection with regular sets. 



326 GINSBURG AND GREIBACH 

DErlmTION. A homomorphism h on 2'1" is decreasing if I h(a)l ~ 1 for each a in 

Notation. Let G(G0) denote the family of (c-free) regular sets. 

LEMMA 3.4. For each nonempty language L, 

(a) ,.~(L k.) {E}) = .../~(L) = {h2(h-~a(L) ~ R)/R in G, h a and h~ decreasing homo- 
morphisms}. 

(b) ._////'(L k.,' {E}) = {hz(h-;a(L) n R) /R in G, h a and h 2 decreasing homomorphisms, 
hz c-limited on R}. 

(c) i lL  --  {c} =?6 q~, then 

~{(L - -  {E}) = { h2( h~a( L ) t~ R ) / R in G, h a and h 2 decreasing homomorp hisms, 

h~ c-limited on R, h-~a(E) n R = ~}. 

Proof. We shall only prove (b) and (c), the proof of (a) being similar to that of (b). 
Consider (b). Let  • L )  be the family of all sets of the form h~(h~a(L) n R), where R 

is in G,  h a is a decreasing homomorphism, and h 2 a decreasing homomorphism which is 
C-limited on R. By Proposition 3.1, dg(L w {c}) is closed under E-free homomorphism, 
inverse homomorphism, and intersection with regular sets. By Corollary 5, page 7 
of  [4], and Remark 2, page 8 of [4], dg(L tJ {c}) is closed under E-limited homomor-  
phism. Hence dg(L u {c}) contains h~(h-~a(L) n R) for each R in G,  each decreasing 
homomorphism h a , and each decreasing homomorphism h 2 ~-limited on R, thus on 
h~X(L) n R. 

Now let M 1 be an E-free a-transducer. We consider MI(L u {c}) = Ma(L ) w Mi( @ 
Since Mi(c ) is regular, Ml(C ) - -  {E} is in G 0 . Since L :/= q~, J/Z(L) contains G 0 by Theo-  
rem 1.1 of [4] and Remark 2, page 8 of [4]. Then  J/Z(L) contains Ma(L ) u (Ma(E) --  {E}) 
by  Lemma  3.1. Hence Ma(L ) w (Ma(E) - -  {c)) = M2(L ) for some E-free a-transducer 
M s . Let  M = (K  x , Z 1 , 27,,, H,  P0, Fa) be a 1-bounded, E-output bounded a-trans- 
ducer such that M(L)  = M2(L ). For each (p, u, v, p ' )  in H, let (p, u, v, p ' )  be a new 
symbol and 273 the set of all such symbols. Let  h a and h 2 be the homomorphisms 
f rom 273* into 271" and 2"3* into Z'2* , resp., defined by hl((p, u, v ,p '))  = u and 
h2((p, u, v, p '))  = v for all (p, u, v, p ' )  in 273. Since M is 1-bounded, h 1 and h 2 are 
decreasing homomorphisms.  Let  i 0 = 0 and R a be the set 

{(P,0 uil v,1 P,1) "'" (P,,-1, ui, ,  v i , ,  p~,)/(p~j, u~,+,, v~j+x,p,j+,) in Y73, 

n >~ 1, 1 ~ j < n ,  pi inFa}. 

Let  R z = R 1 u {cIE in L, P0 in F1}. Then  R 1 and R 2 are regular sets and 
M(L)  = hz(h~a(L) n R2). Since M is E-output bounded, h 2 is c-limited on R 2 . Suppose 
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Mx(L w {e}) is �9 Then  MI(L w {e}) = M~(L) w (M~(�9 - -  {e}) = he(h;~(L) nRz), 
and MI(L u {e}) is in g(L).  Suppose MI(L U {�9 contains �9 Then  

MI(L k.) {�9 = M I ( L  ) k.) (M~( �9  - -  {e}) k.) {e} = h2(h11(L) 0 Re) k.) {�9 

Two cases arise. Suppose L contains �9 Then  Mt(L u {�9 = h2(h;l(L) n (R 2 u {�9 
so that MI(L vo {E}) is in g(L).  Suppose L is �9 Since L =/= r there exists a 1 ... ak 
in L, with k >~ 1 and each ai in 271 . Let  al .... , ak be new symbols and 
2:4 = 2:3 w {ai ] 1 ~ i ~< k}. Let  R a = R 2 v2 {d 1 ,..., tgk}. Let  h a and h~ be the homo- 
morphism on X4* defined by ha(x ) = hi(x), h4(x ) ~ h2(x), ha(~i) = a~, and h4(~) = �9 
for all x in L' a and all d~. Then  MI(L vo {�9 = ha[h~l(L) n Rz] , with h a and h a decreas- 
ing homomorphisms,  and h~ ~-limited on R z . Again M~(L u {�9 is in g(L).  In  all 
cases, therefore, MI(L vo {�9 is in g(L).  

Consider (c). Let  L - -  {�9 :/: 5b and let g - ( L )  be the family of all sets of the form 
h2[h~l(L) ~ R], where R is a regular set, and h 1 and hz are decreasing homomorphisms,  
with tts e-limited on R and h ~ - l ( e )  ~ R = ~. By (b), g - ( L )  _C d{(L t3 {�9 By definition, 
each language in g - ( L )  is �9 Hence cg-(L) _C {L1/L 1 in d/ (L  w {�9 L 1 �9 Con- 
sider the reverse containment. Suppose L 1 is c-free and in ~ / ( L  W {�9 By (b), 
L~ = hz[h-~l(L) n R], with R in ~ ,  and h I and h~ decreasing homomorphisms,  with 
h= �9 on R. Since L 1 is c-free, 

h21(�9 ~ [h-l(L) ~ R] ~- ~ and L 1 = hz[h-l(L) ~ (R -- (R o h~l(�9 

Since R is regular, R - -  (R C~ h~-l(�9 is regular. Since h 2 is c-limited on R, it is �9 
on R --  (R n h~-~(�9 Obviously h~-l(e) n [R --  (R n h~a(�9 = r Hence L 1 is in 
cg-(L), so that g - ( L )  = {L1/L a in d / ( L  w {e}), L 1 �9 

Using Theorem 3.1 and Lemma  3.4, we now prove 

THEOREM 3.2. Let L be a language and c a symbol not in Nz �9 Then 

(a) ~ ( L )  = {hz(h~l((Lc) *) n R)/R in ~ ,  h 1 and h 2 decreasing homomorphisms}. 

(b) -~(L ~ {�9 = {h2(h~l((Lc) *) c3 R)/R in ~ ,  h 1 and h 2 decreasing homomor- 
phisms, h 2 c-limited on R}. 

(c) o~(L --  {e}) = {h2(h-~l((Lc) *) ~ R)/R in ~ ,  h a and h 2 decreasing homomor- 
phisms, h z c-limited on R, h~l(�9 n R = r 

and, if  L ~ r 

T ( L  - -  {�9 = {h2(h~l((Lc) +) n R)/R in~,  hl and h 2 decreasing homomorphisrns, 

h2 �9 on R, h~-l(E) t3 R = r 

Proof. (a) and (b) follow immediately from Theorem 3.1 and Lemma  3.4. 
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Consider (c). I f L  = {~}, then (c) holds since o~-(L - -  {c}) and the other two sets in 
the equations are all ~ 0 .  I f L  = 6, then the two sets in the first equation are also ~0  �9 
Thus  supposeL - -  {~} :#  6. The  second equation then follows from Theorem 3.1 and 
Lemma 3.4. Consider the first equation. Let  o*(L) be the right side of the first equation. 
From (b), o#(L) _C #-(L v {e}). Since 

o~-(L --  {~}) = {L'/L' in o~-(L U {e}), L'  is e-free} 

and each language in g(L) is e-free, @(L) C ~ ( L  --  (e}). T o  see the reverse containment, 
let L'  be in ~-(L --  {~}). Since ~-(L --  {e}) _CC ~r(L u {~}), L' = h2[h-ia((Lc) *) c~ R] for 
some regular set R and some decreasing homomorphisms h a and h~, where h~ is 
c-limited on R. Let  R' = R --  (h~-l(~) (h R). Clearly R' is regular, h 2 is E-limited on 
R', and h~l(~) c~ R' = ~. Then  L' = h,[h~l((Lc) *) t~ R] = h~[h-~l((Lc) *) c~ R'] t3 L", 
where L" = h2[h~X((Lc) *) t~ (h-~l(e) ~ R)]. Since L" is either {~} or ~ and L '  is e-free, 
L" = ~. Hence L'  = h~[h~l((Lc) *) n U'], so that L'  is in g~(L), i.e., ~-(L - -  {e}) _Cff(L), 
whence equality. 

SECTION 4. OPERATORS 

We now discuss several operators on principal AFL that yield principal AFL.  Now 
from Theorem 2.1 of Section 2 and from Theorem 2.1 and Lemma 1.1 of [11], it 
follows that (a) if L~ 1 and s are (full) principal AFL,  then so is the smallest (full) 
A FL  containing the family {L 1 n L j L  1 in -~1, L~ in s Similarly, from Theorem 2.1 
of Section 2 and from Theorem 4.2 and Lemma 4.1 of [11], it follows that (b) if 
and LP~ are (full) principal AFL,  then so is the family of sets obtained by substituting 
c-free (arbitrary) languages of S~ into languages of LP a . In this section we offer alge- 
braic proofs of (a) and (b) instead of AFA dependent proofs. Furthermore, for each 
of the (full) AFL  given by the conclusions of (a) and (b), we exhibit a (full) generator 
which depends on the given (full) generators for s and 5r 2 in a reasonably simple 
manner. 

Notation. For all families of languages LP a ,..., LPn, let 

s ^ "'" ^ 5r = {L l n ".. n LJeach  L~ in .LPi}. 

Notation. 

and 

For all families .W of languages, let 

H(.Z') = {h(L)/L in Lt', h an e-free homomorphism on 27z*}, 

I:-I(,L#) = {h(L)/L in L~ ~ h an arbitrary homomorphism on Z'L* ). 
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I f  ~ and ~a 2 are AFL,  then by Theorem 2.1 of [5] so is H ( ~  ^ ~L~2). Our  first major 
results in this section are algebraic proofs that H(~L~ h ~ )  is principal if ~ and oZ' 2 
are, a n d / ~ ( ~ a  ^ ~L~) is full principal if ~ and ~ are. In  addition, we shall display 
(full) generators for H(~L,r ^ s162 ( / ~ ( ~  ^ ~ ) )  from (full) generators for ~ and ~q~. 

Nota t ion .  For all languages L 1 and Lz let 

Shuff(Lx, L~) = { w l y  1 . . .  w , y , / w ~  . . .  w ,  i nLa ,  ya - " y ,  inLz}. 

LEMMA 4.1. L e t  L ,  

L = Shuff(La, L2), 

(a) 
( b )  

(c) 

Proof. 

and  Lz  be languages such that  22z~ t3 Xz~ = 4 .  Then f o r  

^ =_ if and # 4, 

~/(L~ - -  {e}) ^ ~/(L~ - -  {e}) C ~ - ( r  - -  {e}) i f L  1 - -  {~) :75 ~ andL~  - -  (a} =/= ~.  

We shall show (c), the proofs for (a) and (b) being similar. 
Suppose L 1 - -  {~} 5z5 ~b and L 2 - -  {~} 3& ~b. Then  L 1 and L~ both contain a non-E 

word. Let  L '  = Shuff(L 1 - -  {e}, L 2 - -  {e}). As is easily seen, 

(1 )  = - -  {e}). 

Now note that 

(2) h~l(L1 - -  {e}) n h~l (Ls  - -  {e}) is in ~-(L')  for all homomorphisms h 1 and h 2 . 
For let h i and h a be homomorphisms of 271" into X *  and 12" into 2 ~ ,  resp. Let  h 3 
be the homomorphism on (X 1 n 272)* defined by h3(a ) = hi(a ) h2(a ) for each a in 
22a ~ 272. Consider h~l(L1 - -  {e}) n h~l(L2 - -  {e}) and h~l(L'). Clearly e is not in 

hla(La - -  {e}) U h~l(L2 - -  {e)) k) h ~ ( L ' ) .  

Let a a "" a k be arbitrary, with k >~ 1 and each a i in 221 c3 Z' 2. Then  a a "" a k is in 
hyl (La - -  {~}) ~ h2a(L2 - -  {~}) if and only if hi(a1) ... h~(ak) is in L 1 - -  {e} and 
h2(al "'" ak) is in L~ - -  {~}. Since IL l  n XL2 ----- 4, this occurs if and only if 

ha(aa) h2(al) "" hl(ak)  h~(a~) = ha(a1) . . ,  ha(ate ) 

is in L' ,  and hence a I ... a k is in h~l(L'). Thus  h~l(L1 - -  {e}) t~ h~(L~ - -  {e)) = h~ l (L  ') 

and thus is in ~-(L') .  
We next observe that 

(3) if L a is in d/ ' (L 1 - -  {~}), then L 3 c3 h~l(L2 - -  {e}) is in ~-(L - -  {e}) for every 
homomorphism h 3 . 

For let L a = M ( L  1 - - { e } )  for some c-free a-transducer M. By Proposition 3.1, 
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M ( L  1 - - { e } ) =  h,~(hla(La- {e})("/R) for some R in ~ ,  h o m o m o r p h i s m  h i ,  and 
e-free h o m o m o r p h i s m  h 2 . Le t  h 4 = h3h 2 . T h e n  

L 8 (3 h~l(L2 - -  (e}) = h2(hll(L~ --  {e}) n R)  n h~a(L2 --  {e}) 

-= h2[h~a(L1 - -  {e}) (3 R ~ h-~ah~I(L2 - -  {e})] 

= h2[h-~m(L1 - -  {r (3 h~a(Lz - -  {e}) (3 R].  

By (2) and (1), h 1 1 ( L x -  {e})fh h~-X(L2- {e}) is in o~(L ') = - o ~ ( L -  {e}). T h u s  
h2[hxi(La - -  {e}) n h;l(L2 - -  {e}) ~ R] = L 3 (3 h~l(L2 - -  (e}) is in o~(L - -  {e}). 

W e  are now ready to consider  ~#(L  a - -  (e}) (h ~ ' ( L  2 - -  {e}). L e t L  4 be in , g ( L  1 - -  {e}) 
and L 5 in d/ /(L 2 - -  {e}). By Proposi t ion 3.1, L 5 = h6[h~X(L2 - -  {e}) (3 R1] , where  h s 
and h n are homo m orph i sm s ,  with h n e-free and R 1 in ~ .  N o w  

L4 (3 L5 = L4 n hs[h;a(L2 - -  {e}) (3 R~] 

---- h6[h-~l(La) (3 h-~a(Z2 - -  {e}) n R1]. 

Since JC/(L I - -{e})  is closed unde r  inverse h o m o m o r p h i s m  and intersect ion with 
regular  sets, h61(L4) n R a is in Jh ' (L 1 - -  {e}). By (3), (h~l(L4) (3 R , )  n h~l(L2 - -  {e}) 
is in o~(L - -  {e}), whence  h6[h61(L4) (3 R I (3 h~l(L2 - -  {e})] = L 4 (3 L 5 is in o~(L - -  {e}). 

THEOREM 4.1. Let  L a and L~ be nonempty languages. Let  h and h' be one to one 

homomorphisms on L 1 and L 2 , resp., such that Sh(L1 ) (3 S h ' % )  = ~. Let  q and c 2 be two 

symbols not in ZML1) k) 2~h,(L2) . Then 

H(,~(L1)  ^ ~J(L~)) = o~'(Shuff((h(La) q)+, (h'(L2) c2)+)) i f  L 1 or L 2 is e-free, 

H(~ ' (La)  ^ ~ ( L 2 ) )  = o~(Shuff((h(La) q )* ,  (h'(L2) c2)*)) i f ,  is in La n L 2 ,  

(a) 

(b) 

and 

(c) 

Proof. 

/s ^ o~(Lz) ) = g (Shuf f ( (h (La)  ca)*, (h'(L2) q)*)) .  

Since o~(L) = o~'(h"(L)) and ~ ( L ) C  o~(h"(L)) for each one to one h o m o -  
m o r p h i s m  h" on L,  it suffices to assume that  h and h' are the  ident i ty funct ions and 
z,~ n&~ =~. 

(a) Le t  L = Shuff((LlCl) +, (Lece)+). Suppose  L i is e-free for some i in {1, 2}, say 
L a is E-free. T h e n  g(o~(La)  ^ i f (L=))  = H(o~(La)  ^ ~ - (L  2 - -  {e})). I f  L 2 = {E}, then  
(a) is easily seen to hold, Suppose  L z - -{e}  =/= q~. I t  is s t ra ightforward to verify that  

~ +, (L2c2) +) = ~ +, ( r  - -  {e}) c2)+)). 

An  analogous result  holds if L 2 is e-free. T h u s  we m a y  assume that  L 1 and L 2 are 
e-free. 
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By Theorem 3,1, dd(Lici) +) = o~(Li - -  {E}) = ~,~(Li) for each i. Then 

~ ( L ~ )  a ~-(L2) = ..#/((L~cx)+) a d/((L2c2) +) 
__C #-(L --{E}), by (c) of Lemma 4.1, 

= o~-(L), since L is E-free. 

Hence H(o~(Lt) ^ ~(L2) ) C ~-(L). 
Consider the reverse containment. For i = 1, 2, let h~ be the homomorphism 

on Z'L~ kd ZLz W {Q, Ca} defined by hi(a ) = a for a in ZL, td {Q} and 
h~(a) = ,  otherwise. Then L = h~( (L~q)  +) c~ h-d~((L2@+). Hence L is in 
~-(LI) ^ ~(L~) _C H(ff (Li)  ^ ~-(L2) ). Therefore ~-(L) _C H(~-(L1) ^ ~-(L2)), whence 
equality. 

(b) An argument similar to that in the second part of (a) shows that 

~-(Shuff((Llq)*, (L~Q)*) C H ( J ( L ~ )  ^ ~ ( L e )  ). 

Consider the reverse containment. By Theorem 5.3.1, d#((Lici)* ) ~- ~ ( L i )  for each i. 
Then 

~(L~) ^ J~(L2) = J///((LlCl)* ) A ./f[((L2c2)* ) 

C o~(Shuff((L~q)*, (Lzcz)*), hy (b) of Lemma 4.1. 

(c) I f L  1 and L 2 both contain E, then 

IrI (~(LI)  a ~ ( L 2 )  ) = I: I (H(~(L~)  ^ .~(L~))) 

= H(~-(Shuff((LlCl)* , (L~Q)*))), by (b), 

= .r (LaQ)*)). 

Suppose L~ or L~ does not contain e. Then 

/~(.~-(L~) ^ ~-(Le) ) = / t (H(~-(L1)  ^ ~(L~))) 

: / t (~(Shuff( (Ltc~)+,  (L2c~)+))), by (a), 

= ~(Shuff((Ltct) +, (L2Q)+)). 

Since 

Shuff((L~q)*, (L2c~)*) = (L~cl) + w (L~c~) + u {e} t3 Shuff((LlCl) +, (L2c2) +) 

and 

Shuff((Llq)+, (L2cz)+) = Shuff((LiQ)* , (L2c2)*) c~ [(ZL1 W ZL, U {ct, c2})* 

- u 

~(Shuff((L~cl) +, (L2c~)+)) = ~(Shuff((L1Q)* , (L2c2)*)), 

completing the proof. 

57'/4/4-3 
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COROLLARY 1. I f  ~ and .oq~z are (full) principal A F L ,  then so is H ( ~  ^ .W~) 
(~(~ ^ ~e~)). 

F r o m  the corol lary to T h e o r e m  1.2 in [ l l ] ,  

H ( ~  ^ . . .  ^ ~ )  = H ( H ( ~  ^ . . .  ^ ~ - 0  ^ ~) 

for  n > / 3  A F L  ~a 1 ,..., .L~an, and  

I : I ( ~  ^ . . .  ^ ~ )  = I = I ( B ( ~  ^ . . .  ^ ~ _ ~ )  ^ ~) 

for n >~ 3 full  A F L  L~ ,..., L~~ T h u s  we have 

COROLLARY 2. I f  ~ ,..., s are (full) principal A F L ,  then so is H(.~'  x ^ ... ^ s 

0 q ( ~ l  ^ "'" ^ ~)). 
F r o m  T h e o r e m  4.1 there  follows 

COROLLARY 3. A n  A F L  0~r is closed under intersection i f  and only i f  it is closed under 
Shuff, i.e., Shuff(L 1 ,L2) is in .W for each L1,  La in ~Z'. 

T h e  second opera tor  to be d iscussed in this  sect ion is subst i tu t ion.  

Notation. F o r  all families of  languages ~ and s  let  s  1 5 ~ ( ~  o 0~)  be  the  
family  of all , (L),  w h e r e L  is in .W 1 and r is a (E-free) subs t i tu t ion  14 such tha t  ~-(a) is in 

L~a~ for  each a in 27 L . 
I f  ~ and .W 2 are A F L ,  then  so are ~ cr .LP 2 ([11], Corol lary  1 of T h e o r e m  4.2) and  
5 .Wa [7]. I f  ~ and .W~ are full  A F L ,  then  ~ a .La 2 = ~a x 5 .W~ is a full  A F L  by  

R e m a r k  4 after T h e o r e m  4.1 of  [11]. 
W e  now tu rn  to an algebraic p roof  tha t  ~-(L1) a .~-(L2) (o~(Lt) ~ ~ ( L 2 )  ) is a (full) 

p r inc ipa l  A F L .  F i r s t  though ,  we need  two lemmas.  

LEMMA 4.2. Let L be an E-free language and M = (K1,  Z 1 , Z~,  H, Po ,F)  a 
1-bounded, c-output bounded a-transducer such that H contains no sequence of elements 
(P0,  u t ,  v l ,  Pt),.--, ( P t ,  Ut+l ,  vt+l , P,+I) with the properties that v~ = E for each i and 
Pt+x is in F. Then there exists a 1-bounded, E-output bounded a-transducer 
M '  = (K',  Z1,  Z2,  H' ,  qo, F)  such that M' (L)  = M(L),  qo is not in F, H '  con- 
tains no element of the form (qo, E, v, q), and H '  contains no sequence of elements 
( % ,  Ul ,  v l ,  ql),..-, (q* , Ut+x , Vt+l , q~+x) with the properties that vi = E for each i and 
qt+I is in F. 

14 Let L be a language and for each a in 27L let La be a language. Let r be the function defined 
on 27L* by ~(~) = {d, z(a) = L,  for each a in Z'L, and r(ax "'" a~) = ~(al) "'" 7(a~) for each 
ai in Z' L and n > 1. Then T is called a substitution. 7 is extended to 2 ~  by defining T(X) = 
[J~tux r(x) for all X _C 27L*. ~ is called E-free if z(a) is E-free for each a in 2~L. 
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Proof. 
with a. 
Let K '  

(1) 
(2) 
(3) 
(4) 
(5) 

Let M '  

First assume that there exists a in Z~ such that each word in L begins 
For e a c h p  in K 1 l e t p '  be a new symbol. Let q0 be a new symbol. 

= K 1 u {qo, P'/P in/s and let H '  consist of the following 4-tuples: 

(Px, u, v, Pc) for all (Pl ,  u, v, Pc) in H. 

(qo, a, v, p) for all (Po, a, v, p) in n .  

(Pl', E, v, Pc') for all ( P l ,  E, V, P2) in H. 

(qo, a, v, p ' )  for all (Po, E, v, p) in H. 

(p]', E, v, Pc) for all (Pl ,  a, v, Pc) in H. 

= (K',  Z1, Z2,  H', qo,F).  Clearly M '  satisfies the conclusion of the lemma. 
Now let L be any E-free language. For each a in 271 , let L a = a~ ' l*  r~ L. Clearly 

M(L)  = (JL~g, M(La). By the previous paragraph, for each a, La ~ r there exists 
an a-transducer Ma' = (Ka', Y'I, Ze ,  Ha', qo, F~) satisfying the conclusion of the 
lemma for L , .  Since q0 is not in Fa, we may assume that Ka' n K (  = {q0} for each a 
and b in 271, a =/= b. Then  M '  = (U K~', 2;1,2J 2 , U Ha', {qo} W F~) satisfies the 
conclusion of the lemma for L. 

For the next lemma we need a particular kind of substitution, first defined in [10]. 

Notation. Given languages L 1 and L2, with XL~ n 2'L2 = r let *L~ be the substitu- 
tion on X *  defined by rL2(a ) = aL e for each a in SL1. 

LEMMA 4.3. Let L 1 and L e be nonempty languages such that L 1 is e-free and 
ZL1 n ZL~ = r Let c be a symbol not in Z~LI L) ZL2 . Then 

m'(L,) _C 

Proof. Let L be in ~(L1)  o- d///(L2). Then L = z(L3) , where L 8 is in Jd(L1) and, 
for each b in .ZL3, r(b) is an E-free set in d//(L2). Since L x is e-free, so is L z . By Lemmas 
3.2 and 4.2, we may assume thatLz = MI(L1) , where M s = (K1,27L1 , 27L3 , / / 1 ,  P0, F1) 
is a 1-bounded, e-output bounded a-transducer such that P0 is not in F 1 , H 1 contains 
no element of the form (Po, E, v,p),  and H a contains no sequence of elements 
(P0, Ul ,  731, P l ) , ' " '  (Pt, Ut+l, Vt+I,Pt+I) with the properties that vi = e for each i 
and P*+I is in F 1. For each b in 27L3 , there exists an e-free a-transducer 
M b = (K~, XL,, Ho,  qb, Fb) such that q0 is not in Fb and r(b) = Mb(L~). Clearly 
we may assume that all sets of states are pairwise disjoint. 

Let w be a specific element in L 2 . Let 

u 
b In ~L~ 
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be the a-transducer where 

{,})U(K~ • U K~) ,  / ~ o = ( P o , e ) ,  F = F ~  X{e}, KM (KI x 
b i n  Z'L3 

and H contains 

(1) 
(2) 
(3) 

the following 4-tuples: 

((P, O, awc, e, (p', 0)  if (p, a, ~, p ' )  is in H I ,  with a in Z'Lx U {E}. 

((p, E), a, ~, (p', q~)) if (p, a, b, p ' )  is in Ha ,  with b in 2:L3 and a in Z'L~ U {~}. 

((p, q), u, v, (p, q')), for each p in / s  if (q, u, v, q') is in Ho.  

(4) ((p, q), c, e, (p, e)) for all p in 1s b in Z'Ls, and q in Fb.  

Intuitively, M simulates the operation of M 1 on the first coordinate and Mb on L 2 
on the second coordinate. The  idea of the simulation is as follows. While M 1 reads 
ai,  ai in Z'L1 k3 {e}, and outputs bi, b~ in ~'L3 L) {e}, M reads a~L2c and out- 
puts ~-(bi) = Mb~(L2). The  start and end of this subroutine always occurs at states in 
K 1 • {e}. [Initially, M 1 reads a symbol a 1 in Z'LI since H I contains no rule of the form 
(Po, e, v, p). Hence al(L2c)+ supplies an appropriate number  of occurrences of L2c. ] 
I f  M 1 reads a i in Z'L1 L) {E} and outputs E, then by (1), M reads exactly one word, 
aiwc, in a~L2c , and outputs {E} = r (0 .  I f  M~ reads a~ in Z'L1 L) {E} and outputs b i in 
SL, ,  then by (2), (3) and (4), M reads a~Lzc and outputs Mb,(L2) = r(bi). In  particular, 
by (2), M reads ai,  outputs e, and goes to the start state of Mb.  By (3), M reads all 
words o f L  2 and outputs all words of Mb(L2). By (4), M is in an accepting state of M b 
and, under c, gets ready to simulate the processing of M 1 on ai+ x . 

More formally, we now show that M(r%e)+(L1) ) : ~-(MI(L1) ). Suppose 
(P0, a l ,  b l ,  Pl) ..... (Pk-1 , ak ,  bk, Pk) is a sequence of elements in / /1 ,  with p~ in F 1 
and a 1 ... a k in L 1 . Let  re(l) < ..- < re(t) be the indices for which a i is in 2:L1. 
Note that re(l) : 1 since H 1 has no elements of the form (P0, e, %P). Let  U be the 
set of all words z~(1) ... zm(t), where for 1 ~ i < t, 

Zm(i)  = am(i)Wm(i)Cm(1)Wra ( i ) + l C m ( i ) + l  " ' "  Wm(i+l )_ lCm( t+l )_ lgm( t )  

= am( t )Wm(t )Cm (t) "'" WkClc, 

and for all j, 1 ~ j ~ k, cj = c and wj is obtained as follows. I f  bj = e then wj = w. 
I f  bj is in 2Jz3 then wj is in L 2 . Obviously UC_ am(1)(L2c)+ ... am(t)(L2c)+. From (1), 
(2), (3), and (4), r(bl) "" r(bk) C_ M(U).  Therefore rMI(L1) C M(r%c)+(Lx)). 

To see the reverse inclusion, let v be in M(T%c)+(Lx) ). Then  there exist u in r(L2c)+(La) 
and a sequence 

(5) ( r l ,  Ul, VX, r2),..., (rk, uk, vk, rk+l) 

of  elements in H such that r x = (Po, E), rk+ 1 is in F, u = u 1 " ' "  U k , and v = v 1 "" vk �9 
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Let m(1) < ... < m(t) be those integers i such that r(i) is in K 1 • {E}. For each j, let 
rm(j) = (p/ ,  e). Then re(l) = 1 and re(t) = k q- 1. For each j, 1 ~<j < t, consider 

(6) (r,,,(j), urn0) " '" U m ( J + l ) - I ,  E) D-'-- " '"  b ' - - - - ( r ra ( j+ l ) ,  E, Vm(j)  "'" '/.)ra(.4+l)_l ) 

as obtained from (5). Two possibilities arise. 

(~) m(j + l) - -  re(j) = 1. Rules (2) and (4) imply that (6) is obtained by an 
application of a type 1 rule. Thus  vm~l = r urn0) is of the form a,~(j)wc, and 
(pj ,  a,,(j), b,~j), p'j+~) is i n / / 1 ,  with b~j)  = e. Thus  v,~j) is in r(b,~(~)). 

(fl) m(j -k 1) - -  m(j) > 1. Then a type 1 rule is not used. Thus  type 2, 3, and 4 
rules only are used, with exactly one occurrence of a type 2 rule and exactly one 
occurrence of a type 4 rule. Since a state of the form (p, e) can be entered from another 
state only on reading (in part) an occurrence of c (rules (1) and (4)), u,,(j) ""um(5+1)_1 

is in u~(j)L2c , with Ur~ 0)+1 "'" Urn0+1)-1 inL2c. Since rule (2) is used, (p,~', am(C), bin(j), 
p ' + l )  is in //1 for some bin(j) in 2Jza , with am(j) = u,~0) �9 From rules (3) and (4), 
v~0. ) ... v,,,(j+x)_ ~ is in Mo,.,j~(a,,,(~)L2c ) = ,(b,~(~)). Since u a ... ut is in  *(Lzc)+(L1), with 
ui in ZL~ Va {E} if i is not of the form m(j) for some j, and u,,(~) is either am(~) in 27L~ V) (~} 
or u,,,(~) = amo)WC, a,,,(~) in 22L1 W {~}, it follows that a,,,(1 ) "" a,,,(~) is inLx.  Then 

(Pa', am(a), bin(l)  , P2")  " "  (P~'--I , ara(~),  bc'n(k), PL"+I) 

is a sequence of elements in H 1 , with Pl '  = P0, Pk' in F I , and am(l) "'" am(k) in L 1 . 
Then  bin(l)"'" b,~(~) is in Ml(am(1)'" am(k) ) and % "'" vt is in r(bm(1)" '"  bin(k)), i.e., 
v is in rMI(L1). T h u s  M(r(L2c)+(L1) ) C rMl(Zl) , whence equality. 

In  view of (1) and the hypothesis o n / / 1 ,  H contains no sequence of elements of the 
form (r0, Ul, % ,  rl),... , ( r t ,  U,+l, %+1, r*+l) such that vi = ,  for all i, r 0 = iS0, and 
rt+ 1 is in F = F~ • {E}. In view of Lemma 3.2, in order to complete the proof of the 
lemma it suffices to show that M is e-output bounded. Since M~ is e-output bounded, 
there exists k 1 such that M 1 has at most k a consecutive moves with e as output. Each 
type 1 rule simulates an e-rule in M 1 . Types 2 and 4 rules add e-output rules to H. 
Since each Mb is e-output free, no type 3 rule is an E-output rule. Thus  M has at most 
k I q- 2 consecutive e-output rules, namely one of type 4, followed by k 1 of type 1, 
followed by one of type 2. Hence M is e-output bounded. 

We also need the following result which, in essense, has been proved elsewhere. 

PROPOSITION 4.1. For each family ~q" of languages, ~.~(og a) = ~0~J/C(~a) and 
ae(.~) = ~ ~ j ( ~ e )  = ~o ~ ~r 

Proposition 4.1 follows from Corollary 2 of Theorem 4.2 of [4], with slight modifica- 
tion due to e, and from the corollary to Theorem 4.l of [4]. 

We are now ready for the second major result of this section. 
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THEOREM 4.2. Let LI and L~ be nonempty languages, with Zzx n ,F,~.~ = ~. For new 
symbols ct and c 2 

(a) .~(Lx) (r 3~(L~) ---- o~-(-r(L,~,)+((L~cx)+)) i f L  1 is e-free, 
(b )  ,a*~"(L1) 0-oq~"(L2) = ~(T(L~c~)+((LIs i lL  1 contains e, and 
(c) ~ ( L I )  (7 ~'(L2) ~'(L1) 6 ~(L2)  = ff0-U.,o,)+((Lxcx)+)). 

Proof. (a) Suppose L 1 is e-free. Clearly ~'~L~e~)+((LlCx)+) is in o~-(La) o ~'(L~). By 
Corollary 1 of Theorem 4.2 of l11], ~ q Lfa is an AFL if Lf~ and .Lf2 are AFL.  Thus 
~(~-(L~,)+((L~q)+)) _C ..~(L~) o ~-(L~). 

Consider the reverse containment. Note that 

~ ' (LI)  o ~/(L2) _C Jr by Lemma 4.3, 

Let h be the homomorphism on (ZL~ U ZL, U {Cl, c2})* defined by h(ca)= e and 
h(x) = x for x in 27L~ U ZL, U {ca}. Let 

u = ,-,,,0,)+((qq)+) c~ ((z~ ~ z , ,  v {: ))+ q). 

Then U is in o~(r(L~)+((Llq)+)). SinceL 1 is e-free, r(z~c~)+(La) = h(U) = h(U) --  {~}. 
Since h is e-Iimited on U, ~(L,~)+(L~) = h(U) - -  (e} is in o~(~-(Li~i)+((Liel)+)) by Corol- 
lary 5 of Theorem 2.1 of [4]. Thus 

.///(L1) o ~' (L, )  _C o~(~-,L,~)+(L~) ) 

C ,a~"(.r(L,r ((Licl)+)). 

As noted in [4], each AFL is closed under substitution into e-free regular sets. Thus 

~o  ~ (~g(L0 o ~g(L2) ) _C ~:(~c~)+((L~e0+)). 

Finally, note that 

~,~(L1) o ~-(L~) = ~-(L1) o ( ~  0 a.A[(L~)), 

= ( ~ ( L ~ )  ~ ~ 0 )  ~ ~g(L~), 

---- o~-(L1) o ~g(L2), 

= g 0  - ( ;g(L1) ~ ~g(L2)), 

by Proposition 4.1, 

by associativity of o, is 

since each AFL is closed under substitu- 
tion by e-free regular sets, 

by Proposition 4.1 and associativity of ~. 

Hence o~-(L1) ~ ~-(L2) _C ~-(~-tLzc,)+((LlCa)+)), whence equality. 

1~ It was shown in [7] that ~ is associative on families of languages closed under isomorphism, 
i.e., (.o~10.~2) ~ = "~t~ if ..9'1, . ~ ,  and "~3 are closed under isomorphism. The same 
proof shows that o is associative on such families. 
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(b) Suppose L a contains ~. Since (b) is true if L a = {~}, we may assume that 
L a zff {@ Then  

,.~'(L1) cr o~-(L~.) = oq~(L1 - -  {,}) (x ,~ (L2)  k.) {L k.) {e}/L in o~'(L 1 - -  {,)) (x o~(L~)) 

= o~-(~-(L,,W(((L 1 - -  {,}) ca)+)) 

(J (L t)  {~}[L in ~'(T~L,,,)+(((L x - -  {~}) q)+))}. 

As is easily seen, 

Thus  

- {4)  q )+) )  = 

(c) 

o~'(Lt) (r 3~'(L~) = ~(r(L,%)+((LtcO+)) t)  {L U {E}/L in ~(-r(L~r 

= 

Since (c) is obviously true i fL  a = {e}, we may assume tha tL  1 ~ {e}. Then  

~(L~) a o~(L,) = o4(o~-(La - -  {,))) o o4(~-(L,)) 

= ~ (o~(L  1 --{E})(~ o~(L~)), by C0roIlary 5 to Theorem 
4.2 of [ l l ] ,  

---- ~(~'(r(L,e,)+(((La --  {~}) q)+))), by (a), 

= 

= 

COaOLLAaY 1. I f  ifa and if2 are (full) principal AFL,  then so is ~ cr ~ ( 4  ~ if2 = 

Proof. Let -Lea----~'-(La) and if~--= 5 (L2)  ( / ~  ~(La))  and ~'2----~ If  
L 1 ~ ~ and L 2 ~ q~, then the corollary follows immediately from Theorem 4.2. I f  
L = ~, then o~(La) = ~-({a}) and o~(L1) = ~({a}). I f  L2 = ~, then o~'(L~) = o~({a}) 
and o~(Le) = o~({a}). Thus  the corollary is also true i fL  1 = ~ o r L  2 = ~. 

By induction, we get 

COROLLARY 2. I f  ~ 1  .... , ~ are (full) principal AFL,  then so is ~ ~ if2 ~ " "  (~ 
i f .  = 

COROLLARY 3. An A F L  i f  is closed under substitution i f  and only i f  ~ f  is closed 
under all substitutions of the form -rz~(La) for L a and L 2 in i f .  
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