220 research outputs found

    Pattern of gastric emptying in the pig: relation to feeding.

    Get PDF
    The aims of the present study were to compare the gastric emptying of dry matter (DM) and liquids during the feeding period with that following meal consumption, to clarify the relationship between feeding and gastric emptying, and to investigate how gastric emptying changes in growing animals. The studies were performed in pigs fitted with a gastric cannula and fed on a normal finely ground solid diet mixed with water containing CrEDTA as liquid marker. Gastric emptying was measured using a gastric evacuation technique. It was observed that between 0.75 and six hours after feeding the total amounts emptied increased, but the proportion of the meal emptied fell, with increase in meal size; emptying of both DM and liquids with large and small meals followed and exponential pattern. In contrast, while the animals were feeding, there was linear and rapid emptying of both DM and liquids following a very short (approximately two minutes) lag phase before emptying began. The rate of emptying increased linearly with body-weight (by 0.55 g DM/min and by 0.24 ml/min per kg body-weight over the range 58–200 kg), such that the emptying of digestible energy per kg metabolic body-weight (W0.75) was roughly maintained (between 2.9 and 3.2 kJ/min per kg W0.75). This suggests that the rate of emptying may be linked in some way with the metabolic requirements of the body. The biphasic pattern of gastric emptying observed is probably the intrinsic pattern of emptying of a meal which does not require breakdown of particles before emptying can occur

    On Superspace Chern-Simons-like Terms

    Full text link
    We search for superspace Chern-Simons-like higher-derivative terms in the low energy effective actions of supersymmetric theories in four dimensions. Superspace Chern-Simons-like terms are those gauge-invariant terms which cannot be written solely in terms of field strength superfields and covariant derivatives, but in which a gauge potential superfield appears explicitly. We find one class of such four-derivative terms with N=2 supersymmetry which, though locally on the Coulomb branch can be written solely in terms of field strengths, globally cannot be. These terms are classified by certain Dolbeault cohomology classes on the moduli space. We include a discussion of other examples of terms in the effective action involving global obstructions on the Coulomb branch.Comment: 23 pages; a reference and an author email correcte

    High-energy gamma-ray emission from the inner jet of LS I+61 303: the hadronic contribution revisited

    Get PDF
    LS I+61 303 has been detected by the Cherenkov telescope MAGIC at very high energies, presenting a variable flux along the orbital motion with a maximum clearly separated from the periastron passage. In the light of the new observational constraints, we revisit the discussion of the production of high-energy gamma rays from particle interactions in the inner jet of this system. The hadronic contribution could represent a major fraction of the TeV emission detected from this source. The spectral energy distribution resulting from p-p interactions is recalculated. Opacity effects introduced by the photon fields of the primary star and the stellar decretion disk are shown to be essential in shaping the high-energy gamma-ray light curve at energies close to 200 GeV. We also present results of Monte Carlo simulations of the electromagnetic cascades developed very close to the periastron passage. We conclude that a hadronic microquasar model for the gamma-ray emission in LS I +61 303 can reproduce the main features of its observed high-energy gamma-ray flux.Comment: 6 pages. Sligth improvements made. Accepted version by Astrophysics and Space Scienc

    Evaluation of bioadhesive capacity and immunoadjuvant properties of vitamin B(12)-Gantrez nanoparticles.

    Get PDF
    PURPOSE: To design bioadhesive Gantrez AN (poly[methyl vinyl ether-co-maleic anhydride], PVM/MA) nanoparticles (NP) coated with Vitamin B12 (Vit B12), and investigate their application in oral antigen delivery. METHODS: The association of Vit B12 to Gantrez AN nanoparticles was performed by the direct attachment of reactive Vit B12 to the surface of the nanoparticles (NPB), or linking to the copolymer chains in dimethylformamide prior to NP formation (NPBDMF). Nanoparticles were characterized by measuring the size, zeta potential, Vit B12 association efficacy, and stability of Vit B12 on the surface of the nanoparticles. In vivo bioadhesion study was performed by the oral administration of fluorescently-labeled nanoparticle formulations to rats. Both systemic and mucosal immune responses were evaluated after oral and subcutaneous immunization with ovalbumin (OVA) containing Vit B12-coated nanoparticles. RESULTS: The Vit B12 nanoparticles displayed homogenous size distribution with a mean diameter of about 200 nm and a negative surface charge. The association efficiency of Vit B12 to NPB-DMF formulation was about two times higher than to the NPB, showing also a higher surface stability of Vit B12. The bioadhesion study demonstrated that NPB-DMF had an important tropism to the distal portions of the gut, which was about 2 and 3.5 times higher than the tropism observed for NPB and control NP, respectively (P< 0.05). Oral administration of OVA-NPB-DMF induced also stronger and more balanced serum anti-OVA titers of IgG2a (Th1) and IgG1 (Th2) compared to control OVA-NP. In addition, oral immunization with OVA-NPB-DMF induced a higher mucosal IgA response than subcutaneous administration. CONCLUSIONS: These results indicate the benefits of bioadhesive Vit B12-coated nanoparticles in oral antigen delivery eliciting systemic and mucosal immune response

    Higher-Derivative Terms in N=2 Supersymmetric Effective Actions

    Full text link
    We show how to systematically construct higher-derivative terms in effective actions in harmonic superspace despite the infinite redundancy in their description due to the infinite number of auxiliary fields. Making an assumption about the absence of certain superspace Chern-Simons-like terms involving vector multiplets, we write all 3- and 4-derivative terms on Higgs, Coulomb, and mixed branches. Among these terms are several with only holomorphic dependence on fields, and at least one satisfies a non-renormalization theorem. These holomorphic terms include a novel 3-derivative term on mixed branches given as an integral over 3/4 of superspace. As an illustration of our method, we search for Wess-Zumino terms in the low energy effective action of N=2 supersymmetric QCD. We show that such terms occur only on mixed branches. We also present an argument showing that the combination of space-time locality with supersymmetry implies locality in the anticommuting superspace coordinates of for unconstrained superfields.Comment: 30 pages. Added references and simplified final form of WZ ter

    High Energy QCD: Stringy Picture from Hidden Integrability

    Get PDF
    We discuss the stringy properties of high-energy QCD using its hidden integrability in the Regge limit and on the light-cone. It is shown that multi-colour QCD in the Regge limit belongs to the same universality class as superconformal N\cal{N}=2 SUSY YM with Nf=2NcN_f=2N_c at the strong coupling orbifold point. The analogy with integrable structure governing the low energy sector of N\cal{N}=2 SUSY gauge theories is used to develop the brane picture for the Regge limit. In this picture the scattering process is described by a single M2 brane wrapped around the spectral curve of the integrable spin chain and unifying hadrons and reggeized gluons involved in the process. New quasiclassical quantization conditions for the complex higher integrals of motion are suggested which are consistent with the SS-duality of the multi-reggeon spectrum. The derivation of the anomalous dimensions of the lowest twist operators is formulated in terms of the Riemann surfacesComment: 37 pages, 3 figure

    Caged Black Holes: Black Holes in Compactified Spacetimes I -- Theory

    Full text link
    In backgrounds with compact dimensions there may exist several phases of black objects including the black-hole and the black-string. The phase transition between them raises puzzles and touches fundamental issues such as topology change, uniqueness and Cosmic Censorship. No analytic solution is known for the black hole, and moreover, one can expect approximate solutions only for very small black holes, while the phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a forthcoming paper. Goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. Predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the ``overall numerical error''. Field asymptotics and expressions for physical quantities in terms of the numerical ones are supplied. Techniques include ``method of equivalent charges'', free energy, dimensional reduction, and analytic perturbation for small black holes.Comment: 23 pages. v3: version to be published in PRD, 3 references adde

    New black holes in the brane-world?

    Get PDF
    It is known that the Einstein field equations in five dimensions admit more general spherically symmetric black holes on the brane than four-dimensional general relativity. We propose two families of analytic solutions (with g_tt\not=-1/g_rr), parameterized by the ADM mass and the PPN parameter beta, which reduce to Schwarzschild for beta=1. Agreement with observations requires |\beta-1| |\eta|<<1. The sign of eta plays a key role in the global causal structure, separating metrics which behave like Schwarzschild (eta<0) from those similar to Reissner-Nordstroem (eta>0). In the latter case, we find a family of black hole space-times completely regular.Comment: 4 pages, RevTeX, 3 eps figures, final version to appear in Phys. Rev.

    Schwarzschild Solution on the Brane

    Full text link
    In this communication we have shown that Schwarzschild solution is possible in brane world for some specific choices of brane matter and the non local effects from the bulk. A conformally flat bulk space time with fine-tuned vacuum energy (brane tension) shows that, Schwarzschild solution may also be the vacuum solution for brane world scenario.Comment: 3 page

    The Scale of Cosmic Isotropy

    Full text link
    The most fundamental premise to the standard model of the universe, the Cosmological Principle (CP), states that the large-scale properties of the universe are the same in all directions and at all comoving positions. Demonstrating this theoretical hypothesis has proven to be a formidable challenge. The cross-over scale R_{iso} above which the galaxy distribution becomes statistically isotropic is vaguely defined and poorly (if not at all) quantified. Here we report on a formalism that allows us to provide an unambiguous operational definition and an estimate of R_{iso}. We apply the method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7, finding that R_{iso}\sim 150h^{-1} Mpc. Besides providing a consistency test of the Copernican principle, this result is in agreement with predictions based on numerical simulations of the spatial distribution of galaxies in cold dark matter dominated cosmological models.Comment: 15 pages, 4 figures, accepted by JCAP. The text matches the published versio
    corecore