285 research outputs found

    Contributions to the geomorphology of the North York moors.

    Get PDF
    This thesis is a geomorphological study of Eskdale, a drainage basin in the North York moors. The aims of the study are to examine the potentiality of the technique of morphological mapping as a basis for quantitative study in geomorphology, to consider some of the factors which affect angle of slope and to elucidate the development of the physical landscape within the drainage basin. There is a general relationship between angle and area of slope in a drainage basin; as angle increases above one degree the area of slope decreases. A regression is derived to express this relationship. Distributions of angle of slope plotted against area of slope for certain controlled conditions are obtained and compared with the results from the drainage basin framework. Eskdale was drained by a major eastward - flowing consequent stream in early Tertiary time which was superimposed upon the underlying geological structures. Three planation surfaces were produced after the mid - Tertiary earth movements. During the production of the most recent of these, which developed in two parts as partial peneplains, specific drainage changes occurred and these are analysed in detail. The Quaternary sequence of stages in valley development is considered for the main valley. The mode of decay of the last ice sheet in the area is examined. Stagnant ice formed throughout the area during deglaciation but its formation was preceeded by two stages of ice - marginal drainage in eastern Eskdale.The major landforms introduced by periglaciation are considered and the variation of angle of slope with different values of orientation analysed. This shows that not one direction, but several, suffered oversteepening after the last glaciation. Finally, an analysis of mass movements which occurred during 1960 - 1961, largely as a result of exceptionally high rainfall, is made

    Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics

    Get PDF
    Background and Purpose Clinical use of cinacalcet in hyperparathyroidism is complicated by its tendency to induce hypocalcaemia, arising partly from activation of calcium-sensing receptors (CaS receptors) in the thyroid and stimulation of calcitonin release. CaS receptor allosteric modulators that selectively bias signalling towards pathways that mediate desired effects [e.g. parathyroid hormone (PTH) suppression] rather than those mediating undesirable effects (e.g. elevated serum calcitonin), may offer better therapies. Experimental Approach We characterized the ligand-biased profile of novel calcimimetics in HEK293 cells stably expressing human CaS receptors, by monitoring intracellular calcium (Ca2+i) mobilization, inositol phosphate (IP)1 accumulation, ERK1/2 phosphorylation (pERK1/2) and receptor expression. Key Results Phenylalkylamine calcimimetics were biased towards allosteric modulation of Ca2+i mobilization and IP1 accumulation. S,R-calcimimetic B was biased only towards IP1 accumulation. R,R-calcimimetic B and AC-265347 were biased towards IP1 accumulation and pERK1/2. Nor-calcimimetic B was unbiased. In contrast to phenylalkylamines and calcimimetic B analogues, AC-265347 did not promote trafficking of a loss-of-expression, naturally occurring, CaS receptor mutation (G670E). Conclusions and Implications The ability of R,R-calcimimetic B and AC-265347 to bias signalling towards pERK1/2 and IP1 accumulation may explain their suppression of PTH levels in vivo at concentrations that have no effect on serum calcitonin levels. The demonstration that AC-265347 promotes CaS receptor receptor signalling, but not trafficking reveals a novel profile of ligand-biased modulation at CaS receptors The identification of allosteric modulators that bias CaS receptor signalling towards distinct intracellular pathways provides an opportunity to develop desirable biased signalling profiles in vivo for mediating selective physiological responses

    L-band synthetic aperture radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs

    Get PDF
    Woody canopy cover (CC) is the simplesttwo dimensional metric for assessing the presence ofthe woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regionshttp://www.elsevier.com/locate/jag2017-10-31hb2016Geography, Geoinformatics and Meteorolog

    Hyper-temporal C-band SAR for baseline woody structural assessments in deciduous savannas

    Get PDF
    Savanna ecosystems and their woody vegetation provide valuable resources and ecosystem services. Locally calibrated and cost effective estimates of these resources are required in order to satisfy commitments to monitor and manage change within them. Baseline maps of woody resources are important for analyzing change over time. Freely available, and highly repetitive, C-band data has the potential to be a viable alternative to high-resolution commercial SAR imagery (e.g., RADARSAT-2, ALOS2) in generating large-scale woody resources maps. Using airborne LiDAR as calibration, we investigated the relationships between hyper-temporal C-band ASAR data and woody structural parameters, namely total canopy cover (TCC) and total canopy volume (TCV), in a deciduous savanna environment. Results showed that: the temporal filter reduced image variance; the random forest model out-performed the linear model; while the TCV metric consistently showed marginally higher accuracies than the TCC metric. Combinations of between 6 and 10 images could produce results comparable to high resolution commercial (C- & L-band) SAR imagery. The approach showed promise for producing a regional scale, locally calibrated, baseline maps for the management of deciduous savanna resources, and lay a foundation for monitoring using time series of data from newer C-band SAR sensors (e.g., Sentinel1).Greg Asner, through the CAO campaign and acknowledged partners, provided funding for the LiDAR acquisition and LiDAR processing, as well as interpretation and review of the results.http://www.mdpi.com/journal/remotesensingam2016Electrical, Electronic and Computer EngineeringGeography, Geoinformatics and Meteorolog

    Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) synthetic aperture radar data

    Get PDF
    Structural parameters of the woody component in African savannahs provide estimates of carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are at risk of over utilisation. The woody component can be characterised by various quantifiable woody structural parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, each been useful for different purposes. In contrast to the limited spatial coverage of ground-based approaches, remote sensing has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, cover and biomass, as well as species diversity and phenological status – a defining but challenging set of characteristics typical of African savannahs. Active remote sensing systems (e.g. Light Detection and Ranging – LiDAR; Synthetic Aperture Radar – SAR), on the other hand, may be more effective in quantifying the savannah woody component because of their ability to sense within-canopy properties of the vegetation and its insensitivity to atmosphere and clouds and shadows. Additionally, the various components of a particular target’s structure can be sensed differently with SAR depending on the frequency or wavelength of the sensor being utilised. This study sought to test and compare the accuracy of modelling, in a Random Forest machine learning environment, woody above ground biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets. Training and validation data were derived from airborne LiDAR data to evaluate the SAR modelling accuracies. It was concluded that the L-band SAR frequency was more effective in the modelling of the CC (coefficient of determination or R2 of 0.77), TCV (R2 of 0.79) and AGB (R2 of 0.78) metrics in Southern African savannahs than the shorter wavelengths (X- and C-band) both as individual and combined (X + C-band) datasets. The addition of the shortest wavelengths also did not assist in the overall reduction of prediction error across different vegetation conditions (e.g. dense forested conditions, the dense shrubby layer and sparsely vegetated conditions). Although the integration of all three frequencies (X + C + L-band) yielded the best overall results for all three metrics (R2 = 0.83 for CC and AGB and R2 = 0.85 for TCV), the improvements were noticeable but marginal in comparison to the L-band alone. The results, thus, do not warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in this environment.Council for Scientific and Industrial Research (CSIR) – South Africa, the Department of Science and Technology, South Africa (Grant Agreement DST/CON 0119/2010, Earth Observation Application Development in Support of SAEOS) and the European Union’s Seventh Framework Programme (FP7/2007-2013, Grant Agreement No. 282621, AGRICAB) for funding this study. The Xband StripMap TerraSAR-X scenes were acquired under a proposal submitted to the TerraSAR-X Science Service of the German Aerospace Center (DLR). The C-band Quad-Pol RADARSAT-2 scenes were provided by MacDonald Dettwiler and Associates Ltd. – Geospatial Services Inc. (MDA GSI), the Canadian Space Agency (CSA), and the Natural Resources Canada’s Centre for Remote Sensing (CCRS) through the Science and Operational Applications Research (SOAR) programme. The L-band ALOS PALSAR FBD scenes were acquired under a K&C Phase 3 agreement with the Japanese Aerospace Exploration Agency (JAXA). The Carnegie Airborne Observatory is supported by the Avatar Alliance Foundation, John D. and Catherine T. MacArthur Foundation, Gordon and Betty Moore Foundation, W.M. Keck Foundation, the Margaret A. Cargill Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr., and William R. Hearst III. The application of the CAO data in South Africa is made possible by the Andrew Mellon Foundation, Grantham Foundation for the Protection of the Environment, and the endowment of the Carnegie Institution for Science.http://www.elsevier.com/locate/isprsjprs2016-07-31hb201

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only \sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Humans and elephants as treefall drivers in African savannas

    Get PDF
    Humans have played a major role in altering savanna structure and function, and growing land-use pressure will only increase their influence on woody cover. Yet humans are often overlooked as ecological components. Both humans and the African elephant Loxodonta africana alter woody vegetation in savannas through removal of large trees and activities that may increase shrub cover. Interactive effects of both humans and elephants with fire may also alter vegetation structure and composition. Here we capitalize on a macroscale experimental opportunity – brought about by the juxtaposition of an elephant-mediated landscape, human-utilized communal harvesting lands and a nature reserve fenced off from both humans and elephants – to investigate the influence of humans and elephants on height-specific treefall dynamics. We surveyed 6812 ha using repeat, airborne high resolution Light Detection and Ranging (LiDAR) to track the fate of 453 685 tree canopies over two years. Human-mediated biennial treefall rates were 2–3.5 fold higher than the background treefall rate of 1.5% treefall ha–1, while elephant-mediated treefall rates were 5 times higher at 7.6% treefall ha–1 than the control site. Model predictors of treefall revealed that human or elephant presence was the most important variable, followed by the interaction between geology and fire frequency. Treefall patterns were spatially heterogeneous with elephant-driven treefall associated with geology and surface water, while human patterns were related to perceived ease of access to wood harvesting areas and settlement expansion. Our results show humans and elephants utilize all height classes of woody vegetation, and that large tree shortages in a heavily utilized communal land has transferred treefall occurrence to shorter vegetation. Elephant- and human-dominated landscapes are tied to interactive effects that may hinder tree seedling survival which, combined with tree loss in the landscape, may compromise woodland sustainability.Andrew Mellon Foundation; Council for Scientific and Industrial Research (CSIR) Strategic Research Panel; Dept of Science and Technology (DST); Avatar Alliance Foundation; Margaret A. Cargill Foundation; David and Lucile Packard Foundation; Gordon and Betty Moore Foundation; Grantham Foundation for the Protection of the Environment; W. M. Keck Foundation; John D. and Catherine T. MacArthur Foundation; Exxaro Chairman's Fund; Applied Centre for Climate and Earth System Science; DST/NRF Centre of Excellence in Tree Health Biotechnology; NRF Innovation Scholarship [UID: 95030].http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1600-05872018-11-30hj2017Geography, Geoinformatics and Meteorolog

    Fuelwood extraction intensity drives compensatory regrowth in African savanna communal lands

    Get PDF
    Woody biomass remains the primary energy source for domestic use in the developing world, raising concerns about woodland sustainability. Yet woodland regenerative capacity and the adaptive response of harvesters to localised fuelwood shortages are often underestimated or unaccounted for in fuelwood supply–demand models. Here, we explore the rates and patterns of height‐specific woody vegetation structural dynamics in three communal lands in a semiarid savanna in South Africa. Using repeat, airborne light detection and ranging, we measured height‐specific change in woody vegetation structure, and the relative influence of geology, fire, and ease of access to fuelwood. Monitoring 634,284 trees canopies over 4 years revealed high compensatory growth, particularly in the high wood extraction communal land: 34.1% of trees increased in height >1 m. Vegetation structural patterns were associated with ease of access to the communal land but were mediated by wood extraction intensity. In these communal lands, vegetation structural dynamics show rapid woody thickening as a response to repeat harvesting. However, loss of height in vegetation structure did not follow a gradient of wood extraction intensity. We propose a conceptual framework to better understand change in vegetation structural metrics and the paradoxical phenomenon of high growth in high wood extraction scenarios. We also show coadaptive responses of humans and woody vegetation to fuelwood harvesting in human–environment systems through patterns of regrowth response relative to ease of access to fuelwood resources.LiDAR data collection was funded by the Andrew Mellon Foundation, the Council for Scientific and Industrial Research (CSIR) Strategic Research Panel and the Department of Science and Technology (DST). The CAO has been made possible by grants and donations from the Avatar Alliance Foundation, Margaret A. Cargill Foundation, David and Lucile Packard Foundation, Gordon and Betty Moore Foundation, Grantham Foundation for the Protection of the Environment, W. M. Keck Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr, and William R. Hearst III. B. F. N. E. is supported by the Exxaro Chairman's Fund. P. J. M. is funded by the DST/NRF Centre of Excellence in Tree Health Biotechnology and an NRF Innovation Scholarship (grant UID: 95030).http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-145X2020-01-30hj2018Geography, Geoinformatics and Meteorolog

    What lies beneath : detecting sub-canopy changes in savanna woodlands using a three-dimensional classification method

    Get PDF
    QUESTION : Increasing population pressure, socio-economic development and associated natural resource use in savannas are resulting in large-scale land cover changes, which can be mapped using remote sensing. Is a three-dimensional (3D) woody vegetation structural classification applied to LiDAR (Light Detection and Ranging) data better than a 2D analysis to investigate change in fine-scale woody vegetation structure over 2 yrs in a protected area (PA) and a communal rangeland (CR)? LOCATION : Bushbuckridge Municipality and Sabi Sand Wildtuin, NE South Africa. METHODS : Airborne LiDAR data were collected over 3 300 ha in April 2008 and 2010. Individual tree canopies were identified using object-based image analysis and classified into four height classes: 1–3, 3–6, 6–10 and >10 m. Four structural metrics were calculated for 0.25-ha grid cells: canopy cover, number of canopy layers present, cohesion and number of height classes present. The relationship between top-of-canopy cover and sub-canopy cover was investigated using regression. Gains, losses and persistence (GLP) of cover at each height class and the four structural metrics were calculated. GLP of clusters of each structural metric (calculated using LISA – Local Indicators of Spatial Association – statistics) were used to assess the changes in clusters of eachmetric over time. RESULTS : Top-of-canopy cover was not a good predictor of sub-canopy cover. The number of canopy layers present and cohesion showed gains and losseswith persistence in canopy cover over time, necessitating the use of a 3D classification to detect fine-scale changes, especially in structurally heterogeneous savannas. Trees >3 min height showed recruitment and gains up to 2.2 times higher in the CR where they are likely to be protected for cultural reasons, but losses of up to 3.2-foldmore in the PA, possibly due to treefall caused by elephant and/or fire. CONCLUSION : Land use has affected sub-canopy structure in the adjacent sites, with the low intensity use CR showing higher structural diversity. A 3D classification approach was successful in detecting fine-scale, short-term changes between land uses, and can thus be used as amonitoring tool for savannawoody vegetation structure. Remove selectedThe Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, Gordon and Betty Moore Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr. and William R. Hearst III. Application of the CAO data in South Africa is made possible by the Andrew Mellon Foundation and the endowment of the Carnegie Institution for Science.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1654-109X2016-07-31hb201
    corecore