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Abstract 

Structural parameters of the woody component in African savannahs provide estimates of 

carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary 

source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are 

at risk of over utilisation.  The woody component can be characterized by various 

quantifiable woody structural parameters, such as tree cover, tree height, above ground 

biomass (AGB) or canopy volume, each been useful for different purposes.  In contrast to 

the limited spatial coverage of ground-based approaches, remote sensing also has the 

ability to sense the high spatio-temporal variability of e.g. woody canopy height, cover and 

biomass, as well as species diversity and phenological status – a defining but challenging set 

of characteristics typical of African savannahs.  Active remote sensing systems (e.g. Light 

Detection and Ranging – LiDAR; Synthetic Aperture Radar - SAR), on the other hand, may be 

more effective in quantifying the savannah woody component because of their ability to 

sense within-canopy properties of the vegetation and its insensitivity to atmosphere and 

clouds and shadows.  Additionally, the various components of a particular target’s structure 

can be sensed differently with SAR depending on the frequency or wavelength of the sensor 

being utilized.  This study sought to test and compare the accuracy of modelling, in a 

Random Forest machine learning environment, woody above ground biomass (AGB), canopy 

cover (CC) and total canopy volume (TCV) in South African savannahs using a combination of 

X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS PALSAR) radar datasets.  
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Training and validation data were derived from airborne LiDAR data to evaluate the SAR 

modelling accuracies.  It was concluded that the L-band SAR frequency was more effective in 

the modelling of the CC (R2=0.77), TCV (R2=0.79) and AGB (R2=0.78) metrics in Southern 

African savannahs than the shorter wavelengths (X- and C-band) both as individual and 

combined (X+C-band) datasets.  The addition of the shortest wavelengths also did not assist 

in the overall reduction of prediction error across different vegetation conditions (e.g. dense 

forested conditions, the dense shrubby layer and sparsely vegetated conditions).  Although 

the integration of all three frequencies (X+C+L-band) yielded the best overall results for all 

three metrics (R2=0.83 for CC and AGB and R2=0.85 for TCV), the improvements were 

noticeable but marginal in comparison to the L-band alone.  The results, thus, do not 

warrant the acquisition of all three SAR frequency datasets for tree structure monitoring in 

this environment. 

Keywords: Woody structure, Savannahs, SAR, Multi-frequency, LiDAR, Random Forest   

 

1. Introduction - Background, Aims and Objectives 

Structural parameters of the woody component in African savannahs provide estimates of 

carbon stocks that are vital to the understanding of fuelwood reserves, which is the primary 

source of energy for 90% of households in South Africa (80% in Sub-Saharan Africa) and are 

at risk of over utilisation (Wessels et al., 2011, Wessels et al., 2013).  The woody component 

in African savannahs is an important physical attribute for many ecological processes and 

impacts the fire regime, vegetation production, nutrient and water cycles (Silva et al., 2001).  

The density of woody plants can also severely compromise the availability of grazing 

resources, valuable for livestock populations and related livelihoods, through bush 

encroachment (Wigley et al., 2009).  Within the context of climate change, the 

sequestration of carbon by growing vegetation is a significant mechanism for the removal of 

CO2 from the atmosphere (Falkowski et al., 2000, Viergever et al, 2008).  Understanding how 

carbon is stored as carbon sinks in vegetative biomass and thus quantifying this standing 

biomass is central to the understanding of the global carbon cycle.  Vegetation clearing (e.g. 

for cultivation) and degradation (e.g. for timber or fuelwood) and the burning of biomass, 

which are prevalent in developing regions and savannah woodlands of Southern Africa, can 
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alter carbon stocks and emissions (Falkowski et al., 2000, Viergever et al, 2008).  Based on 

the important environmental implications revolving around woody vegetation, there are 

growing initiatives aiming at forest and woodland conservation that require its active 

inventorying, mapping and subsequent monitoring such as the Reducing Emissions from 

Deforestation and Forest Degradation programme (REDD+) (Corbera & Schroeder, 2011, 

Kanowski et al., 2011, Asner et al., 2013).  

 

The woody component can be characterized by various quantifiable woody structural 

parameters, such as tree cover, tree height, above ground biomass (AGB) or canopy volume, 

each been useful for different purposes.  AGB is defined as the mass of live or dead organic 

matter above the ground surface (excluding roots etc.) and is usually expressed in tonnes 

per unit hectare (Bombelli et al, 2009).  Woody canopy cover (i.e. the percentage area 

occupied by woody canopy or CC) is a key parameter used in monitoring vegetation change 

and can be combined with tree height to estimate approximate AGB (Colgan et al., 2012).  

Lastly, total woody canopy volume (TCV) indicates the volume of vegetation present within 

the vertical profile and serves as an alternative proxy for biomass density and distribution.  

Further, these metrics, both 2D (CC) or 3D (TCV and AGB) in nature can provide useful 

information regarding the prediction of density, habitat requirements and biodiversity 

assessments for conservation (Bradbury et al., 2005, Mueller et al., 2010 and Jung et al., 

2012).   

 

Remote Sensing has been used in numerous studies as the preferred tool for quantifying 

and mapping woody structural features due mainly to its superior information gathering 

capabilities, wide spatial coverage, cost effectiveness and revisit capacity (Lu, 2006).  In 

contrast to the limited spatial coverage of ground-based approaches, remote sensing also 

has the ability to sense the high spatio-temporal variability of e.g. woody canopy height, 

cover and biomass, as well as species diversity and phenological status – a defining but 

challenging set of characteristics typical of African savannahs (Cho et al., 2012; Archibald & 

Scholes, 2007; Mills et al., 2006).  Woody structural parameters have been successfully 

mapped using passive optical data at fine and coarse spatial scales (Boggs, 2010; Castillo-

Santiago et al, 2010) by making use of textural (i.e. the local variance of an image related to 
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its spatial resolution – Nichol and Sarker, 2011) and/or spectral (e.g. spectral vegetation 

indices related to vegetation structure – Johansen & Phinn, 2006) approaches.  Passive 

optical data are, however, adversely affected by high spectral variation (i.e. change in 

spectral properties or character of a target) due to seasonal dynamics, clouds and haze 

(prevalent in the rainy season of African summers and veld fires in the dry winter) and 

shadow (resulting from terrain topography and tree canopies) at fine resolutions and mixed 

wood-grass pixels at the medium and coarser resolutions.  Active remote sensing systems 

(e.g. Light Detection and Ranging – LiDAR; Synthetic Aperture Radar - SAR), on the other 

hand, may be more effective in quantifying the savannah woody component because of 

their ability to sense within-canopy properties of the vegetation and its insensitivity to 

atmosphere and clouds and shadows. 

 

Airborne LiDAR systems provide high-resolution geo-located measurements of a tree’s 

vertical structure (upper and lower storey) and the ground elevations beneath dense 

canopies. SAR systems provide backscatter measurements that are sensitive to forest spatial 

structure and standing woody biomass due to its sensitivity to canopy density and geometry 

(Sun et al, 2011, Mitchard et al, 2011).  Airborne LiDAR provides detailed tree structural 

products but it relies on the availability of aircraft infrastructure, which is not always 

available in Africa.  Satellite LiDAR is also currently not available.  A SAR-based approach, on 

the other hand, offers an all-weather capacity to map relatively large extents of the woody 

component, which cannot be easily achieved with either airborne or satellite LiDAR 

(Mitchard et al, 2011).      

 

Polarization (orientation of the emitted and received signal) and frequency of SAR data play 

important roles in sensing vegetation structure.  Multi-polarized SAR systems (emitting and 

receiving in HH, HV, VH and/or VV with H referring to a horizontal wave orientation and V 

referring to a vertical wave orientation) allow the more complete characterisation of the 

scattering properties of ground targets which in turn, enables the extraction of greater 

structural information.  For instance, HV or VH are better linked to canopy structure 

because of the volumetric water content in the canopies architecture (Schmullius & Evans, 

1997) which brings about volumetric scattering within the canopy (i.e. “random” scatterers), 
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which tends to change the polarization of the emitted wave (e.g. H to V or V to H).  The 

various components of a particular target’s structure can be sensed differently with SAR 

depending on the frequency or wavelength of the sensor being utilized.  For example when 

sensing vegetation, the signal of shorter SAR wavelengths (e.g. X-band and C-band) interact 

with the fine leaf and branch elements of the vegetation resulting in canopy level 

backscattering with limited signal penetration.  The signal of longer SAR wavelengths (e.g. P-

band and L-band), on the other hand, can penetrate deeper into the vegetation with 

backscatter resulting from signal interactions with larger vegetation elements such as major 

branches and trunks (Vollrath, 2010; Mitchard et al, 2009).  Consequently, the L-band 

frequency has been proven in numerous studies to be the most preferred (Carreiras et al., 

2013, Mitchard et al., 2012, Santos et al., 2002, Ryan et al., 2011) and the most effective 

(Lucas et al., 2006) in estimating woody structure, particularly AGB with a higher saturation 

level at 80-85 tonnes/ha compared to the shorter wavelengths, in forested and savannah 

woodland environments. However, since woodlands and savannahs possesses a sporadic 

combination of fine and large woody elements within individual tree canopies and a 

heterogeneous distribution of large trees and smaller shrubs throughout the landscape we 

hypothesized that combining the capabilities of these different SAR frequencies under a 

multi-sensor approach may enhance the sensing of the savannah woody element 

(Schmullius & Evans, 1997).  Various studies have ‘fused’ or integrated multiple SAR 

frequency and polarimetric datasets for modelling and mapping of tree structural attributes 

across various environments from the coniferous temperate forests of North America to 

mangrove forests and to the open-forest woodlands of Australia (Tsui et al., 2012; Mougin 

et al., 1999; Collins et al., 2009).  Despite the success achieved in these various studies via 

combining different SAR wavelengths (according to Mougin et al., 1999 & Tsiu et al., 2012), 

the combined strength of both shorter and longer SAR frequency sensor technologies, 

however, have yet to be assessed in the heterogeneous and complex Southern African 

savannah environment.   

 

This study sought to test and compare the accuracy of modelling woody above ground 

biomass (AGB), canopy cover (CC) and total canopy volume (TCV) in South African savannahs 

using a combination of X-band (TerraSAR-X), C-band (RADARSAT-2) and L-band (ALOS 
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PALSAR) radar datasets.  Training and validation data were derived from airborne LiDAR 

data to evaluate the SAR modelling accuracies.  The research questions were: 

1) How do various SAR frequencies (X- or C- or L-band) perform in predicting woody 

structural parameters (CC, TCV & AGB) in southern African savannahs? 

2) Does combining SAR backscatter through different frequency combinations or 

scenarios (X+C or X+L or C+L band or X+C+L-band) improve the predictions of the 

various woody structural parameters and by how much? 

We hypothesized that the combination of shorter wavelength (~3cm X-band 

and ~5cm C-band) with longer wavelength (~15cm L-band) SAR datasets, in a 

modelling approach, will yield an improved assessment of woody structure based on 

the assumption that X- and C-band SAR signals interact with the finer woody 

structural constituents (e.g. leaves and finer branchlets typical of the 

shrubby/thicket layer) while the L-band SAR signal interact with the major tree 

structural components (e.g. trunk and main branches typical of forested areas).   

3) Finally, through the examination of the patterns of the prediction error, within the 

landscape for the different SAR frequency models, can the hypothesis, proposed 

above, be confirmed? 

 

2. Study Area 

The Kruger National Park regional study area is located in the Lowveld region of north-

eastern South Africa, within the savannah biome (31°00’ to 31°50’ Long E, 24°33’ to 25°00’ 

Lat S).  The study area included portions of the southern Kruger National Park, the 

neighbouring Sabi Sands Private Game Reserve, and the densely populated Bushbuckridge 

Municipal District (BBR) (figure 1).   The area is characterised by short, dry winters and a wet 

summer with an annual precipitation varying from 235mm and 1000mm, and is 

representative of southern Africa savannahs.  This rainfall range, together with grazing 

pressures, fire, geology, mega-herbivore activity and anthropogenic use (fuelwood 

collection and bush clearing for cultivation) govern the vegetation structure present in this 

biome.  The vegetation comprise particularly of Clay Thornbush, Mixed Bushveld and Sweet 

and Sour Lowveld Bushveld (Mucina and Rutherford, 2006).  The woody vegetation in the 
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region is generally characterized as open forest with a canopy cover ranging from 20-60%, a 

predominant height range of 2 to 5m and biomass below 60T/ha (Mathieu et al., 2013).  The 

Sabi Sands Wildetuin consists of a group of private owners with a strong eco-tourism based 

approach to conservation with the Kruger National Park being more geared towards large-

scale public conservation via the inclusion of large tracts of land for protection.  The 

communal rangelands of BBR are primarily utilised for livestock ranching, fuelwood 

harvesting and various non-commercial farming practices (Wessels et al., 2011, Wessels et 

al., 2013).  This study region was selected to represent the differences in the woody 

structure (e.g. riparian zones, dense shrubs, sparse tall trees etc.) and spatial patterns of the 

different land management and disturbance regimes (communal rangeland management, 

private game reserve and national park management), varying vegetation types (lowveld 

savannah and mixed forest fringe species) and geological substrates (granite and gabbro). 

 

Insert Figure 1 
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3. Materials and Methodology 

The general methodology sought to develop woody structural metric models between 

collected field data and airborne LiDAR data for detailed localised metric maps (25m spatial 

resolution to match the field data plots) (figure 5). These LiDAR derived metric products (CC, 

TCV and AGB) were then used as the ground truth for model up-scaling at the regional scale 

using multi-frequency SAR datasets (X-, C- and L-band).  This was achieved by integrating the 

LiDAR and SAR datasets with the use of a sampling grid and the extracted values were 

subjected to modelling using the Random Forest algorithm.  Different SAR frequencies were 

modelled in the form of various SAR frequency combination scenarios.  The SAR-derived 

woody structural metrics were then validated using the LiDAR-derived counterparts (error 

statistics and distribution).      

 

3.1 Remote sensing data 

Five TerraSAR-X X-band dual-polarized (HH and HV), four RADARSAT-2 C-band quad-

polarized (HH, VV, VH, and HV) and two ALOS PALSAR L-band dual-polarized (HH and HV) 

SAR datasets (summarized in table 1) were acquired for this research.  Only dual polarized 

SAR data (HH and HV) was used because the HV polarization parameter is known to better 

model the structure of woody vegetation through volumetric backscatter interactions, while 

HH is also reported as been sensitive to structure although to a lesser extent than the cross-

polarized band (Collins et al., 2009; Mitchard et al., 2009; Mathieu et al., 2013).  Further, 

HH/HV was the common polarization configuration available for all three sensors.  Winter 

seasonal SAR acquisitions were chosen because winter in the Lowveld is the dry season and 

exhibits the lowest level of moisture in the landscape.  The tree leaves are off along with dry 

soil and dry grasses.  This reduced the chance of interference of the SAR signal with variable 

moisture content while allowing a greater penetration of microwaves into the canopies. In 

the same region Mathieu et al. (2013) reported the best retrieval of woody structural 

parameters with RADARSAT-2 data acquired in winter. An extensive airborne LiDAR dataset 

(total coverage of c.a. 63000 ha) were acquired for this study (figure 1) by the Carnegie 

Airborne Observatory-2 AToMS sensor during April-May 2012.  For our datasets, the LiDAR 

was operated at a pulse repetition frequency of 50 kHz with a 0.56m laser spot spacing and 
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an average point density of 6.4 points per m2 from a flying altitude of 1000m above ground 

level (Asner et al., 2012). 

 
3.2 Field data 

Field data were collected in April – May, and November – December 2012 across 38 

sampling sites (in figure 1).  These sites provided ground truth data to model and validate 

the LiDAR derived woody structural metric products to be used to model the SAR-based 

woody structural metrics.  Ground sampling sites were located to represent the diversity in 

woody structure of the different vegetation types, management regimes, and geological 

substrates mentioned above.  Each site covered a 100m X 100m area and vegetation 

measurements were taken from four clustered 25m X 25m sampling plots (with minimum 

distance > 50m, identified from geostatistic range assessments, Wessels et al. 2011), located 

at each of the four corners of the site (Figure 2).  The 100 x 100m sites were positioned 

using high resolution imagery from Google Earth as well as earlier LiDAR datasets acquired 

in 2008 – 2010 to ensure that they are representative of the surrounding landscape. 

 

Field AGB estimates were derived from height and stem diameter measurements using an 

allometric biomass estimation equation (Colgan et al., 2013 – Appendix A).  The allometric 

equation was developed following destructive harvesting of 17 savannah tree species 

present in the study area (N=707; R2 = 0.98; relative RSE = 52%; ranging from 0.2 – 4531 kg) 

Colgan et al (2013). Tree height was measured using a height pole and Laser 

vertex/rangefinder, while stem diameter was measured using callipers and DBH tape.  Stem 

diameter was measured at 10cm above the ground and for multi-stemmed plants every 

individual stem was measured as separate individuals (e.g. species such as Dichrostachys 

cinerea).  

 

Due to logistical and time constrains associated with measuring every tree within the 

sample plot two main stem diameter ‘zones’ were identified inside the site to increase 

sampling efficiency while still yielding representative quantities of biomass estimates (figure 

2).  The first diameter zone was the 25m by 25m plot where all trees with a stem diameter 
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of 5cm and greater were recorded, provided that they had a height of 1.5m or greater, and 

the second diameter zone was a 10m by 10m area positioned at the inner corner of the 25m 

by 25m plot where all trees with a stem diameter between 3 and 5cm and greater than 

1.5m were also recorded. This allowed catering for a few sites, mostly in the communal 

lands, where most of the AGB consisted of dense stands of multi-stemmed plants 

(coppicing) with small DBH (Matsika et al., 2012).  A total of 152 25m X 25m biomass plots 

were sampled.  Individual tree level AGB was derived using Colgan’s allometric equation 

(Colgan et al. 2013).  AGB was then calculated for each diameter zone by summing the 

relevant tree level AGB values which was then subjected to particular AGB up-scaling factor 

(Appendix B).  The complete plot level AGB was calculated by summing all the corrected 

AGB subtotals for the stem diameter zones.    

 

One or two sampling plots were chosen for most sites for CC data collection – the north east 

25m by 25m plot and/or the south west 25m by 25m plot (DHB zone 2 – figure 2).  CC values 

were estimated following the vertical densitometer protocol (Stumpf 1993, Ko et al. 2009), 

conceptually a point intercept sampling approach, and one of the most time-efficient 

techniques to implement.  The point intercept method is a small angle approach well suited 

to measure the vertical canopy cover – i.e. vertical projection of canopy foliage onto a 

horizontal surface –, and as such is the most directly comparable with cover derived from 

remote sensing imagery such as LiDAR (Fiala et al., 2006). The sampling procedure involved 

laying down transects along a fixed 25m measuring tape orientated from north to south and 

moving from west to east within the subplot at 2m increments (figure 2).  Along these 

transects, canopy cover (presence/absence i.e. Y/N) was determined using a 5m pole placed 

vertically above each sampled points every 2m along the transects.  For plot level canopy 

cover, in terms of percentage at the 25m by 25m scale, the CC presence and absence data 

were subjected to the formula below (equation 1):   

 

Where Y represents the presence of cover data.  The total number of sampling points in a 

25m by 25m plot conducted at 2m sampling increments is 169.  A total of 37 (25m by 25m) 

plots of CC were recorded during the field campaign.     
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Insert Figure 2 

 

3.3 LiDAR data processing, woody structural metrics and validation 

Two LiDAR datasets were utilised to derive the LiDAR tree structure metrics.  For the first 

dataset, ~1m Digital Elevation Models (DEM) and top-of-canopy surface models (CSM) were 

created by processing the raw LiDAR point clouds according to the steps outlined in Asner et 

al. (2012).  Canopy height models (CHM, pixel size of 1.12m) were computed by subtracting 

the DEM from the CSM.  For the second dataset, the raw point cloud data were further 

processed to pseudo waveforms, in which the LiDAR hits or returns falling within a cube 

placed above the ground were binned into volumetric pixels (voxels of 5 X 5 horizontal X 1m 

vertical) and weighted relative to the total number of hits within the vertical column (the 

result – LiDAR slicer data) (Asner et al., 2009). 

 

Three woody structural metrics were derived from the processed LiDAR datasets. The 

derivation of the three metrics excluded all woody vegetation below a height threshold of 

0.5m as to exclude the grassy savannah component.  The CAO LiDAR data were validated 

against field height measurements of approximately 800 trees.  There was a strong 

relationship (r2 = 0.93, p < 0.001) but a fraction of woody plants below 1.5-1.7m were not 

detected by the LiDAR (Wessels et al., 2011).  This would introduce a source of error in the 

modelling process.  However, since our objective was to investigate the potential 

contribution of short microwaves (X-band and/or C-band) in detecting the shrubby layer we 

still preferred to use a 0.5m height threshold over a higher height threshold at 1.5m.  In 

addition, all metric products have been resampled and computed at the 25m spatial 

resolution to correspond with the ground data measurements (plot size of 25x25m) 

collected in the field for metric validation.  These metrics are described in detail below: 

1) Woody Canopy Cover (CC) is defined as the area vertically projected on a horizontal 

plane by woody plant canopies (Jennings et al., 1999).  The metric was created by 

first applying a data mask to the LiDAR CHM image in order to create a spatial array 

of 0s (no woody canopy) and 1s (presence of a woody canopy).  A percentage woody 
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cover distribution image (summing all the 1’s and dividing by 625 and then 

percentage) was calculated at a spatial resolution of 25m.  This metric was validated 

against the 37 25m by 25m CC ground truth plots (figure 3).  Results yielded a strong, 

positive, unbiased relationship (R2=0.79) with a low Root Mean Squared Error 

(RMSE) (12.4%) and Standard Error of Prediction (SEP) (23%).   

 

Insert Figure 3 

 

2) Total Canopy Volume (TCV) is a metric which approximates the area under the curve 

of the pseudo waveform (i.e. a plot displaying the LiDAR return frequency-by-height; 

Muss et al., 2011) and indicates the volume occupied by vegetation matter within 

the vertical profile.  The metric was computed from the pseudo waveform LiDAR 

data (i.e. voxel) by the addition of the within-canopy LiDAR returns at different 

heights or slices (incrementally increasing by 1m) above 0.5m (Asner et al., 2009), 

and the value was converted to hectare.  The TCV LiDAR metric was not validated 

with ground collected data as a suitable field sampling approach was yet to be 

defined for this type of savannah environment.  However, in Mathieu et al. (2013), 

the TCV metric, in comparison to all the other metrics, was best correlated with 

RADARSAT-2 backscatter and was thus considered a suitable metric in this study.   

3) Above ground woody biomass (AGB) is defined as the mass of live organic matter 

present above the ground surface (Bombelli et al, 2009) and is expressed in this 

study as tonnes per hectare (t/ha).  The AGB LiDAR derived metric was modelled 

using a linear regression, ground estimated AGB (within 25m field plots) and a simple 

H X CC LiDAR metric (where H is the mean top-of-canopy height and CC is the canopy 

cover of a 25m pixel resolution) (Colgan et al., 2012).  65% of the 152 ground 

estimated AGB was used for model development while the remaining 35% was used 

for model validation.  The validation results of ground versus LiDAR AGB (Figure 4) 

indicate a moderate positive correlation (R2=0.63).  With the use of allometric 

equations from Colgan et al. (2013) for ground AGB estimation, the RMSE (19.2t/ha) 

and SEP (63.8%) is, however, high with underestimation at high biomass levels by the 

LiDAR.  Due to the intensive and time consuming nature of sampling these very high 
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biomass plots, an insufficient number of these plots may have been sampled to 

suitably train the model which thus led to such a deviation from the 1:1 line at the 

high biomass levels in figure 4.  In the absence of better biomass estimates, the 

LiDAR derived AGB metric was deemed sufficient for the modelling and validation. 

 

Insert Figure 4 

 

3.4 SAR data and processing 

The SAR imagery (X-, C- and L-band) were pre-processed according to the steps: multi-

looking, radiometric calibration (conversion of raw digital numbers into σ0 backscatter 

values), geocoding, topographic normalization of the backscatter and filtering.  These steps 

were compiled in the form of scripts in GAMMATM radar processing software for the Dual 

Pol. TerraSAR-X X-band (StripMap, Level 1b, MGD), Fine Quad Pol. RADARSAT-2 C-band (SLC) 

and Dual Pol. ALOS PALSAR L-band (Level 1.1) data.  A 20m DEM and a 90m SRTM DEM were 

both used for the geocoding and orthorectification of the X-, C- and L-band SAR imagery.  

The 20m DEM was computed from South African 1:50 000 scale topographic maps (20m 

digital contours, spot-heights, coastline and inland water area data – ComputaMaps; 

www.computamaps.com) with RMS planimetric error of 15.24m and a total vertical RMS 

error of 6.8m.  The 90m (3 arc sec) STRM DEM was gap-filled using Aster GDEM data and 

was derived from 20m interval contour lines extracted from 1:50 000 topographical maps.  

An automated hydrological correction was applied to correct inaccuracies along river lines 

and tributaries (Weepener et al., 2011).  The multi-looking factors and filtering were chosen 

to best minimize the effect of speckle while not deteriorating the spatial detail captured by 

the sensors. 4:4, 1:5 and 2:8 range and azimuth multi-looking factors were implemented for 

the X-, C- and L-band datasets respectively.  A Lee filter (3X3 filtering window) (Lee, 1980) 

was applied to the images.  All datasets were resampled to a final spatial resolution of 

12.5m to match the spatial resolution of the coarsest dataset (the L-band dataset). 

 

Insert Table 1 

http://www.computamaps.com/
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3.5 Data integration, modelling protocols and mapping 

Before modelling could be conducted the different datasets had to be processed to a 

common spatial grid.  A sampling grid strategy was implemented as the relationship 

between dependent (LiDAR) and independent (SAR backscatter) datasets were not evident 

on a pixel-by-pixel basis mainly due to issues of SAR speckle and pixel-level inaccuracy of co-

registration between datasets.  This strategy also served as a means of extracting 

information from various remote sensing datasets of varying spatial resolutions (see table 1) 

without the need for pixel level fusion procedures.  A regular spatial grid made up of 105m 

resolution cells at 50m distance spacing was applied.  The choice of the cell size was 

informed by Mathieu et al. (2013), who tested various grid sizes ranging from 15m and 

495m with RADARSAT-2 C-band data, and reported the 105m grid size as the resolution 

which provided the best trade-off between the finest spatial resolution/mapping scale and 

strongest correlation with the LiDAR woody structure parameters.  Similar results (50-125m 

grid size) were reported with ALOS PALSAR L-band data in the region (Urbazaev, 2013).  The 

50m distance spacing between the grid cells was chosen to avoid autocorrelation effects 

arising from the inherent distribution of the vegetation structural parameters across the 

landscape (Wessels et al., 2011).  Informal settlements, the main roads and water surfaces 

such as rivers and dams were masked and excluded from the analysis.  Mean values within 

each cell were extracted for the SAR (X-HH, X-HV, C-HH, C-HV, L-HH and L-HV) and LiDAR 

metric datasets (CC, TCV and AGB).  Due to the differences in spatial coverage of the multi-

frequency SAR datasets in relation to the LiDAR coverage (figure 1), a varying number of 

data records (21170 records for X-band, 17980 records for C-band and 21467 records for L-

band) were obtained during aggregation to the 105m grid.  Various data mining, regression 

and machine learning algorithms (linear regression, support vector machines, REP decision 

trees, artificial neural network and random forest) were tested in Naidoo et al. (2014) and  

Random Forest (Breiman, 2003) was found to the most robust and efficient, in terms of 

running time and accuracies (Prasad et al., 2006; Ismail et al., 2010).  RF was applied (using R 

rattle data mining software) to the data with 35% of the data being used for model training 

and the remaining 65% being used for model validation.  The random forest model (built on 

‘ntrees’ = 500 and ‘mtry’ = √# SAR predictors and the trees were allowed to grow without 

pruning) was applied to the imagery using the combination of ModelMap, Random Forest 
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and GDAL modules in R statistical software.  The maps were displayed in discrete class 

intervals (total of 6 classes) to best illustrate the tree structural metric distribution 

representative of the entire modelled ranges. 

   

For the final stage of model validation, the correlation coefficient (R²), Root Mean Squared 

Error (RMSE) and Standard Error of Prediction (SEP in % which also known as the Relative 

RMSE) were computed and the modelling algorithm accuracies were compared for the 

individual SAR scenarios.  Seven modelling SAR scenarios (X-band only, C-band only, L-band 

only, X+C-band, X+L-band, C+L-band and X+C+L-band) were chosen to investigate the 

relationships between the individual SAR frequencies alone and different multi-frequency 

SAR combinations correlated against the three LiDAR metrics.   

 

3.6 Error assessment 

The purpose of this section was to investigate the error produced by the different SAR 

models under varying tree structural scenarios, and to ascertain whether spatial patterns in 

error were associated with specific vegetation structural cohort types (e.g. grassland versus 

woodland conditions etc.).  Error maps were created by subtracting the LiDAR-derived and 

SAR-derived woody (i.e. LiDAR – SAR) CC structural metric maps.  CC was chosen as TCV 

lacked meaningful units for interpretation and AGB displayed high error in the dense forest 

canopies (plots not displayed but supported by the error observed between the ground AGB 

and LiDAR derived AGB in figure 4, before AGB up-scaling to the SAR).  We assessed the 

following main vegetation structural cohort types typical of savannah landscapes: low cover 

and variable tree height (e.g. sparse veld), high cover and high tree height (e.g. forests) and 

high cover and low tree height (e.g. bush encroaching shrubs).  Box and whisker plots were 

created from the mean LiDAR-SAR difference values (i.e. prediction error), which were 

extracted from the same sampling (105m) grid used in the predictor variable extraction 

process, and interpreted.  Similar error assessment analyses were conducted over different 

landscape geologies (e.g. granite versus gabbro) and topographic features (e.g. crest, slope 
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and valleys) but the error distribution patterns were fairly similar without any distinct 

patterns to comment on. 

 

Insert Figure 5      
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4. Results 

4.1 Modelling Accuracy Assessment 

 

Insert Table 2 

 

Insert Figure 6A-G 

 

 

Table 2 illustrates the validation performances of the different SAR predictors, under various 

multi-frequency SAR scenarios, in predicting the three woody structural LiDAR metrics (CC, 

TCV and AGB).  When examining the individual SAR frequency performances for modelling 

all three metrics, the longer wavelength L-band PALSAR predictors consistently yielded 

higher accuracies in comparison to the shorter wavelength predictors of both X-band 

TerraSAR-X and C-band Radarsat-2.  The X-band TerraSAR-X predictors by far consistently 

produced the lowest modelling accuracies.  The combination of the short wavelength SAR 

datasets (X- and C-band) improved the tree structural modelling over the individual dataset 

accuracies results but never produced accuracies greater than the use of the L-band dataset 

alone.  The combined use of all three SAR frequencies (X-, C- and L-band) data in the 

modelling process consistently yielded the highest accuracies for modelling all three 

structural metrics [CC~ R2=0.83, RMSE (SEP)=8.76% (25.40%); TCV~ R2=0.85, RMSE 

(SEP)=16443.57 no unit (15.96%); AGB~ R2=0.83, RMSE (SEP)=5.20 T/ha (29.18%)].  In 

comparison to the results for L-band alone, there was noticeable improvement in modelling 

accuracies [CC~ R2 improvement=0.06, SEP absolute improvement AI (relative improvement 

RI)=4.2% (14.3%); TCV~ R2=0.06, SEP AI (RI)=2.9% (15.5%); AGB~ R2=0.05, SEP AI (RI)=3.7% 

(11.3%)] when the shorter wavelength datasets (X- and C-band) were added but the 

inclusion of the L-band frequency contributed the most to the overall accuracies.  Overall, 

the three metrics were modelled at high accuracies under the multi-frequency scenario (X-, 

C- and L-band) and with similar patterns when considering the various individual scenarios. 

   

Figures 6A-G illustrates, by way of the 1:1 line, the extent of over-prediction and under-

prediction by the models which is gradually reduced towards the multi-frequency scenarios.  

The TCV results were chosen for representation in figures 6A-G as the metric yielded the 



18 
 

highest overall modelled accuracies and the remaining metrics (CC and AGB) displayed 

similar trends throughout the different SAR frequency combinations.  For TCV (figures 6A-

G), general over-prediction is observed at values less than ±100000 (no unit) TCV while 

general under-prediction is observed at values greater than this threshold.   

  

4.2 Tree Structure Metric and Error Maps  

 

Insert Figure 7i-iii 

 

All three metrics were mapped for the study area (Figure 7i-iii) using the multi-frequency 

SAR models (X+C+L-band).  Figures 7(i-iii) illustrate the spatial distributions of AGB (figure 

7i), TCV (figure 7ii) and CC (figure 7iii) which overall were very similar with high and low AGB 

and TCV regions coinciding with high and low CC.  The spatial distribution of these metrics, 

coupled with the authors’ knowledge and observations, will be elaborated upon in detail in 

the discussion section.  Figure 8 shows the ABG vs. CC scatterplot. The point cloud generally 

displays a high correlation between the 2D (CC) and 3D (ABG) variable, but also a triangular 

shape with an increasing base as the CC increases up to 75%.  Hence, dense cover conditions 

(CC>70%) are characterized by ABG values varying from moderate (35-40t/ha) to high 

(>60t/ha), corresponding to a range of tree sizes from coppicing thicket and medium sized 

tree bush encroachment to taller tree forests. 

Insert Figure 8 

 
Examples of CC error maps for dense forested (‘A’ figure 7iii) and sparse gabbro (‘C’) sites 

are presented in figures 9 and 10, respectively.  Total error statistics were calculated to 

investigate the contributions of the four main SAR frequencies scenarios (X-band, C-band, L-

band and X+C+L-band) to the modelling and mapping error (Table 3).  

Insert Table 3 
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Insert Figure 9i-v 

Insert Figure 10i-v 

 

In table 3, there is a noticeable decline in major CC overestimation (<-15%) and major CC 

underestimation (>15%) with an increase in negligible CC error (5 to 15%) from shorter 

wavelengths (X-band to C-band) to the longer wavelength (L-band).  The X+C+L-band 

combined scenario further reduced major CC overestimation and marginally increased 

negligible CC error but at the cost of an increase in major CC underestimation in comparison 

to the L-band results.  More specifically, under dense forested conditions (figures 9i-v), the 

X-band scenario (figure 9i) illustrate major CC underestimation.  C-band results (figure 9ii) 

indicate an overall decrease of patches of major CC underestimation but some of these have 

been replaced with major CC overestimation across less dense patches of large trees (see 

encircled area in figure 9ii).  Further improvement is visible for the L-band scenario (figure 

9iii) with a noticeable increase in the minor CC underestimation (5 to 15%) and negligible CC 

error (evident in table 3).   Finally, the X+C+L scenario in figure 9iv illustrated noticeable 

increases in the negligible CC error coverage (especially over the dense ridge visible in the 

LiDAR CC of figure 9v) but also indicated an increase in major CC underestimation over 

dense vegetation patches north of the ridge (see encircle area in figure 9iv).  Patches of 

major CC overestimation, however, still persist across riparian zones of minor tributaries.  

Under sparse vegetated conditions across gabbro intrusions (figures 10-i-v), however, X-

band and C-band scenarios (figures 10i and 10ii) indicate vast extents of major CC 

overestimation for the areas sparse vegetation and major CC underestimation for the dense 

forested patches (see encircled area in figure  10ii).  The L-band scenario (figure 10iii) 

illustrates a drastic improvement with an extensive increase in negligible CC error across the 

AOI.  Across patches of dense vegetation, major CC underestimation still persists (similar to 

the trend in figure 9).  The X+C+L-band scenario (figure 10iv) also yields favourable results 

similar to the L-band scenario with no visible improvement but did illustrate a slight increase 

in minor overestimation throughout the sparse vegetation landscape (also evident in table 

3).  More quantitative results (box-plots, figures 11i-ii) were introduced next to further 

assess the individual SAR frequency CC error contributions under different sparse and dense 

vegetation conditions. 
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Insert Figure 11i-ii 

CC error boxplots of the four main SAR frequency scenarios, figure 11, were chosen to 

investigate error across vegetation structural types, classified from the LiDAR CHM, and 

including sparse shrubs (CC<40% and height<3m) or trees (CC<40% and height>3m) (figure 

11i), and dense forested (CC>70% and height>3m) or bush encroached (CC>70% and 

height<3m) conditions (figure 11ii).  In general, SAR derived CC is mostly overestimated 

across sparse vegetation but is underestimated across conditions of dense cover which 

coincides with the main trends of figures 9i-v and 10i-v.  The L-band scenario yielded the 

lowest overall CC errors (in terms of mean error or spread, or both) across both low levels of 

CC (<40%) and low height (<3m), and dense CC (>70%) across all height (<3m to >5m) in 

comparison to the X-band (highest variability and mean CC error) and C-band.  Thus under 

sparse and low vegetation and bush encroaching conditions, it is the L-band which yields the 

lower levels of CC error and not the shorter wavelengths (X-band or C-band) as we may have 

expected.  Also, the inclusion of the shorter wavelength datasets (X-band and C-band) with 

the L-band dataset led to minor improvements in the overall variability and mean of CC 

error across most sparse vegetation structural conditions (except regarding vegetation 

conditions with CC <40% and height >5m which is inconclusive) and across tall dense 

vegetation conditions (CC >70% and height >5m).  Most significant improvement of the 

addition of the high frequency data occurred for the sparse and tallest trees (>3m) 

conditions. 

 

5. Discussion 

 
This study investigated the accuracy of modelling and mapping above ground biomass 

(AGB), woody canopy cover (CC) and total canopy volume (TCV) in heterogeneous South 

African savannahs using multi-frequency SAR datasets (X-band, C-band and L-band including 

their combinations).  Various studies have implemented L-band SAR data for tree structural 

assessment in a savannah type environment (Carreiras et al., 2013, Mitchard et al., 2012) 

but the use of shorter wavelengths, such as C-band, have also been proven to perform 

relatively well (Mathieu et al., 2013).  This study also served to compare the three SAR 
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frequency datasets (X-, C- and L-band) in the same study region of Mathieu et al. (2013) and 

is the first attempt in an African Savannah context.  It was hypothesized that the shorter SAR 

wavelengths (e.g. X-band, C-band), since interacting with the finer woody plant elements 

(e.g. branchlets) would be useful for mapping the shrubby/thicket layer while the longer 

SAR wavelengths (e.g. L-band) would interact with larger vegetation elements such as major 

branches and trunks typical of forested areas (Vollrath, 2010; Mitchard et al, 2009).  It was 

thus proposed that the combination of these different SAR frequencies would provide a 

better assessment of the savannah woody element than the individual SAR frequencies 

(Schmullius & Evans, 1997). 

 

The modelling results indicated that it was the longer wavelength L-band dataset which 

contributed the most to the successful estimates of all three woody structural metrics.  This 

finding agrees with other studies in the literature across a variety of ecosystem types such 

as coniferous forests (Dobson et al., 1992), boreal forest (Saatchi & Moghaddam, 2000) and 

temperate forests (Lucas et al., 2006).  The results obtained for the L-band can be attributed 

to its ability to penetrate deeper into the canopy, allowing the signal to interact the most 

with the larger tree constituents such as the trunk and branches (Mitchard et al, 2009), and 

thus produces stronger correlations with the LiDAR metrics.  Despite the status of leaf-off of 

most trees in winter, the shorter wavelengths (X- and C-band), 5.6cm for RADARSAT-2 and 

3.1cm for TerraSAR-X, may have had a limited penetration of the canopy, and generally 

produced higher errors than the L-band for dense tree canopy (Figure 11ii). In the case of 

open woodlands (CC<40, Figure 11i), results suggest that some penetration did occur 

through the larger gaps with some good performance of C- and X-band compared to L-band 

(see tree height >3 m). However, C-band may have also been more sensitive to variability of 

surface roughness features (e.g. dense to sparse grass cover, fire scars etc.) which were too 

small to affect the coarser L-band (Wang et al., 2013, Bourgeau-Chavez et al., 2002, Menges 

et al., 2004).  This interaction of the smaller wavelengths with these surface features may 

have introduced noise, which could have weakened correlations between the SAR signal and 

the LiDAR metrics.      
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The integration of the shorter wavelengths (e.g. X-band, C-band and X+C band), with L-band, 

yielded relatively small improvements in comparison to the L-band result alone (a reduction 

in SEP by ~3% and less for some metrics).  The combination of all three frequencies yielded 

the highest overall accuracies for all metrics than each SAR frequency dataset alone.  This 

result implies that the combination of short wavelength and long wavelength SAR datasets 

(X+C+L-band) does provide improved estimation in the modelling of the complete 

vegetation structure in terms of CC, TCV and AGB.   

 

The CC error AOI maps (figures 9-10i-v) and the CC error box plots (figures 11i-ii) reaffirmed 

the modelling accuracy observations but provided greater insight into the specific SAR 

frequency contributions to the overall prediction error under a variety of woody structural 

conditions.  The use of L-band alone and its integration with the shorter wavelengths 

reduced the overall CC overestimation error (mean error and variability) under sparse 

vegetation conditions while reducing overall CC underestimation under dense vegetated 

conditions, in comparison to the shorter wavelengths alone and their combinations.  These 

observations thus go against the first part of the main hypothesis made in this study which 

hypothesised the importance of shorter wavelengths for interaction with the finer woody 

structural elements and shrubby vegetation cohorts as L-band appears to be more effective 

in this regard.  The incorporation of the shorter wavelengths with the L-band improved the 

overall CC error budget by reducing the overall mean error and the overall variability of the 

error under most vegetation structural conditions.  This result can be supported by the fact 

that the L-band was expected to penetrate deeper and interact with more of the lower 

levels of vegetation structure than the X- and C-band but the shorter wavelengths may have 

provided minor assistance to the L-band by interacting with certain canopy elements which 

the L-band may have missed due to wavelength size (Rosenqvist et al., 2003).  Further 

investigation will need to be done to ascertain the exact cause of these results but these 

results, however, advocate the suitability of the L-band for analysing dense forested 

environments and thus confirms the second part of the main hypothesis which stated that 

the L-band SAR signal interacts with the major tree structural components (e.g. trunk and 

main branches typical of forested areas) (Lucas et al., 2006, Carreiras et al., 2013, Mitchard 

et al., 2012). 
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Among the three structural metrics, TCV was consistently modelled with higher accuracies, 

amongst all seven SAR scenarios (table 2).  This result concurs with that of Mathieu et al. 

(2013).  TCV is a metric which indicates the volume of vegetation present within the vertical 

structure and its higher modelled accuracies could be attributed to the leaf-off conditions 

typical of the dry winter season which allowed for greater wave penetration into the canopy 

for all wavelengths, even the shorter wavelengths.  CC and AGB metrics yielded similar R2 

values with a higher SEP values observed for AGB which may be due to the associated error 

propagated through the allometric equation and the LiDAR model (results of figure 4).  Since 

SAR is a system which utilises penetrating radio waves, the SAR signals will be expected to 

be more related to 3D structural metrics such as TCV and AGB rather than to the 2D CC 

metric (which achieved marginally poorer modelled results).  This is due to the fact that CC 

is a metric for which the 2D horizontal coverage fluctuates seasonally depending on the 

phenological state of the vegetation, at least in comparison to TCV and AGB, which relies on 

the 3D nature of the woody structure which includes height and is thus more consistent 

across seasons (in the absence of disturbance). 

 

The multi-frequency (X+C+L-band) model maps created for AGB (figure 7i), TCV (figure 7ii) 

and CC (figure 7iii) illustrate patterns and distributions resulting from influence of numerous 

biotic (mega-herbivore herbivory and anthropogenic pressures such as fuelwood extraction 

and cattle ranching) and abiotic factors (fire regimes, geology and topographic features) 

relevant to the study area.  In order to discuss the common patterns in CC, TCV and AGB in 

these maps, it will be collectively referred to as “woody vegetation”. Dense woody 

vegetation patterns are observed in the protected forested woodlands (Bushbuckridge 

Nature Reserve) and in the exotic pine plantations within the vicinity of A.  Generally, the 

riparian zones of major rivers and tributaries (e.g. B, the Sabie River catchment) have high 

values of CC, TCV and AGB compared to lower levels on the hill crests.  In contrast to the 

vegetation occurring on granitic soils, the intrusions of the Timbavati gabbro geology group 

(figure 7 C) have very low woody CC, TCV and AGB.  These geological substrates naturally 

support more open landscapes than the more densely vegetated granite soils.  Rangeland 

areas in and within the vicinity of informal settlements, such as Justicea (F), also showed 
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lower levels of CC, TCV and AGB which could be linked to the heavy reliance of the local 

populace on fuelwood collection for energy requirements (Shackleton et al., 1994, Wessels 

et al., 2011, 2013).  The key area of interest E (Athole area which consisted of historical 

rotational grazing camps which are currently inactive – Barend Erasmus, personal 

communication, 27/02/2013) possesses a sharp fence line contrast in tree structure 

between the dense woody vegetation evident in the northern extents of Athole (i.e. north 

of fence) and the sparse woody vegetation in Sabi Sands Private Game Reserve (i.e. south of 

fence).  The extended absence of grazing and browsing pressures in the old pasture and 

paddock enclosures in the northern reaches of the Athole fence line boundary (figure 7 E) 

caused dense woody vegetation which contrasted sharply with the sparser woody 

vegetation in the more open and highly accessed areas south of the fence boundary.  

Additionally, the dense woody vegetation associated with the Acacia welwitschii thicket 

which dominates the ecca shales geological group of Southern Kruger National Park (outside 

map extents) was clearly visible at D (Mathieu et al., 2013).  In conclusion, the accuracy and 

credibility of these maps and their trends have been supported by the various observations 

made during field visits and by the authors’ general knowledge of the study area and the 

general range of these tree structural metric values agreed with the ranges reported in 

other related studies conducted in this savannah region (Mathieu et al., 2013 and Colgan et 

al., 2012). 

 

6. Concluding Remarks 

 

After reviewing all the modelling and error assessment results, it can be concluded the L-

band SAR frequency was more effective in the modelling of the CC, TCV and AGB metrics in 

Southern African savannahs than the shorter wavelengths (X- and C-band) both as individual 

and combined (X+C-band) datasets.  Although the integration of all three frequencies 

(X+C+L-band) yielded the best overall results for all three metrics, the improvements were 

noticeable but marginal in comparison to the L-band alone.  The results do not warrant the 

acquisition of all three SAR frequency datasets for tree structure monitoring. Further the 

addition of the shortest wavelengths did not assist in the overall reduction of prediction 
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error specifically of the shrubby layer as hypothesized. With the imminent launch of the 

ALOS PALSAR-2 L-band sensor, the use of such L-band based models will be critical for 

future accurate tree structure modelling and monitoring at the regional and provincial scale.  

The modelling results obtained from the C-band SAR frequency alone, however, does yield 

promising results which would make the implementation of similar models to the free data 

obtained from the recently launched Sentinel-1 C-band sensor (launched in April 2014) 

viable when L-band datasets are not available.  Sentinel-1 data are as far as we know the 

only upcoming operational, free and open access SAR dataset available in the near future, 

especially in Southern Africa.  Building up of seasonal / annual time series may also improve 

on the performance of single date C-band imagery.  The inclusion of seasonal optical 

datasets (e.g. reflectance bands, vegetation indices and textures derived from LandSAT 

platforms), which can provide more woody structural information, may also augment the 

modelling results. 

 

As a way forward beyond this study, in order to reduce the error experienced in the AGB 

results (at field collection, LiDAR and SAR levels), new and more robust savannah tree 

allometric equations, with a greater range of representative tree stem and height sizes, will 

need to be produced but such efforts will require extensive ground level harvesting 

campaigns.  Due to the success of this study, particularly the positive results using L-band 

SAR data, future work will seek to up-scale these results to greater regional and provincial 

areas using more extensive LiDAR calibration and validation datasets. 
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Appendix A 

M = 0.109D(1.39+0.14ln(D)) H0.73 ƿ0.80 
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Where M = biomass in kg/Ha, D = Diameter above breast height (DBH) in cm, H = height of 

tree in metres and ƿ = mean wood specific gravity (fixed at a mean value of 0.9) which is 

unitless.

Appendix B 

Total 25m by 25m AGB plot = X + Y + (Z*6.25) 

Where X is the total AGB of stems ≥ 10cm DBH, Y is total AGB of stems between 5 and 10cm 

DBH and Z is the total AGB of stems between 3 and 5cm DBH.  The up-scaling factor of 6.25 

was used as stems between 3 and 5cm were only sampled within the 10 by 10m (i.e. DBH 

zone 1) subplot and not sampled for the rest of the 25 by 25m grid (i.e. DBH zone 2). So 

625m2 (i.e. total area of the 25 by 25m sample plot) divided by 100m2 (area of the 10 by 

10m subplot) is 6.25.  All remaining stems within the 25 by 25m sample plot, which 

subscribed to the remaining DBH conditions (i.e. ≥5cm DBH), were measured and therefore 

did not require any up-scaling factors.  



Figure1: The Southern Kruger National Park region and the spatial coverage of all implemented remote sensing datasets. The solid red line indicates the coverage of the 
2009 RADARSAT-2 scenes while the solid gold line indicates the two scenes of the 2010 ALOS dual-pol PALSAR imagery. The dashed grey line indicates the five scenes of 
the 2012 TerraSAR-X StripMap imagery. The shaded black areas represent the coverage of the 2012 CAO LiDAR sensor tree cover product. The red squares indicate the 38 
sample sites where field data collections took place.



Figure2: Ground sampling design including ground tree biomass and tree cover collection protocols (50m
spacing between sample plots coincide with the auto-correlation distance – refer to data integration section)



Figure3: Validation results of field-measured CC (ground truth) versus LiDAR derived CC (above 0.5m height,
N=37)



Figure 4: Validation results of field-measured AGB (ground truth) versus LiDAR derived AGB (above 0.5m
height, N=53)
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Figure 5: Methodology schema describing the data integration and modelling process
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Figure 6A-G: Observed versus Predicted Total woody Canopy Volume (TCV) scatter density plots (dotted line is 1:1)
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Figure 7i-iii: X+C+L SAR derived tree structural metric maps, for i) Above Ground Biomass, ii) Total woody
Canopy Volume and iii) woody Canopy Cover, using random forest. Letters A-F represents key areas of
interest for discussion (for all three metrics



Figure 8: Scatterplot of AGB (y-axis) versus CC (x-axis) under dense cover conditions (plotted from pixels
extracted from the region of AOI ‘A’)



i) X-Band CC Error ii) C-Band CC Error

iii) L-Band CC Error iv) X+C+L-Band CC Error

v) LiDAR-derived CC

Figure 9i-v: LiDAR - SAR scenario difference (error) maps of CC for the Xanthia Forest Area of Interest (close
to A); v) 1m LiDAR-derived CC map



i) X-Band CC Error ii) C-Band CC Error

iii) L-Band CC Error iv) X+C+L-Band CC Error

v) LiDAR-derived CC

Figure 10i-v: LiDAR - SAR scenario difference (error) maps of CC for the Gabbro Intrusions Area of Interest
(C); v) 1m LiDAR-derived CC map



i) ii) 

Figures 11i-ii): CC Error box plots of: i) low LiDAR CC (<40%) and variable LiDAR vegetation height and ii) dense LiDAR CC (>70%) and variable LiDAR vegetation height 
(+’ve values = CC underestimation; -‘ve values =CC overestimation; dashed line partitions the four main SAR scenarios across the x-axis classes, centre point = mean 
value, box = standard error and whiskers = standard deviation) (N= 17559) 



Table 1: SAR and LiDAR datasets acquired and utilised for the modelling of woody structural metrics 

Imagery Sensor Mode 

Original 
Spatial 

Resolution 
Incidence 

angle 
Acquisition 

time Season 

1 

TerraSAR-X 
X-band 

StripMap Dual 
Polarized (HH & 

HV) 
3m 

38.1-39.3° 08/09/2012 

Late Winter 
2012 

2 21.3-22.8° 23/08/2012 

3 37.2-38.4° 28/08/2012 

4 36.2-37.4° 19/09/2012 

5 39.1-40.2° 30/09/2012 

1 

RADARSAT-2 
C-band 

Quad Polarized 
(HH, HV, VH, 

VV) but only HH
and HV used 

5m 

34.4 - 36.0° 13/08/2009 

Winter 2009 
2 39.3 - 40.1° 06/08/2009 

3 32.4 - 34.0° 06/09/2009 

4 37.4 - 38.9° 30/08/2009 

1 ALOS PALSAR 
L-band 

Dual Polarized 
(HH & HV) 

12.5m 34.3° 
14/08/2010 

Winter 2010 
2 31/08/2010 

AGB (kg) Product 
CAO LiDAR 

Discrete 
Footprint 

25m (1.1m 
original) 

Nadir 1/04/2012-
24/05/2012 

End summer 
2012 

CC (%) Product 
TCV Product 



Table 2: CC, TCV & AGB woody parameter modelling accuracy assessment (validation) results obtained from 

the Random Forest algorithm according to seven SAR frequency scenarios 

 

CC Model Validation Results [split into 35% Training & 65% Validation]; Units = % 

X-band only C-band only L-band only 

R² RMSE (SEP) R² RMSE (SEP) R² RMSE (SEP) 

0.34 18.12% (50.87%) 0.61 13.20% (38.50%) 0.77 10.59% (29.64%) 

X+C band X+L band C+L band 

R² RMSE (SEP)  R² RMSE (SEP) R² RMSE (SEP) 

0.69 11.71% (33.94%) 0.80 9.90% (27.78%) 0.81 9.23% (26.94%) 

 
X+C+L band   

  R² RMSE (SEP)     

  0.83 8.76% (25.40%)     

TCV Model Validation Results [split into 35% Training & 65% Validation]; Units = unitless per hectare 

X-band only C-band only L-band only 

R² RMSE (SEP) R² RMSE (SEP) R² RMSE (SEP) 

0.35 35534.50 (33.79%) 0.66 24731.06 (24.07%) 0.79 19902.79 (18.88%) 

X+C band X+L band C+L band 

R² RMSE (SEP)  R² RMSE (SEP) R² RMSE (SEP) 

0.72 22243.64 (21.59%) 0.82 18609.04 (17.70%) 0.83 17236.50 (16.77%) 

 
X+C+L band   

  R² RMSE (SEP)     

  0.85 16443.57 (15.96%)     

AGB Model Validation Results [split into 35% Training & 65% Validation]; Units = tonnes/ha 

X-band only C-band only L-band only 

R² RMSE (SEP) R² RMSE (SEP) R² RMSE (SEP) 

0.32 10.88t/ha (59.82%) 0.60 7.81t/ha (43.66%) 0.78 6.05t/ha (32.90%) 

X+C band X+L band C+L band 

R² RMSE (SEP)  R² RMSE (SEP) R² RMSE (SEP) 

0.67 7.19t/ha (40.33%) 0.81 5.70t/ha (31.35%) 0.81 5.45t/ha (30.44%) 

 
X+C+L band   

  R² RMSE (SEP)     

  
0.83 5.20t/ha (29.18%)     

 



Table 3: Total CC % error across the entire LiDAR-SAR coverage for the four main SAR frequency scenarios 

 

Error Classes X-band Error C-band Error L-band Error X+C+L-band Error 

Major overestimation (<-15) 21.02 13.87 12.78 9.43 

Minor overestimation (-15 to -5) 17.30 16.38 16.74 16.85 

Negligible error (-5 to 5) 19.52 24.58 31.34 31.84 

Minor underestimation (5 to 15) 13.87 16.95 19.27 20.08 

Major underestimation (>15) 28.29 28.21 19.87 21.80 




