35,999 research outputs found

    Efficient high-dimensional entanglement imaging with a compressive sensing, double-pixel camera

    Get PDF
    We implement a double-pixel, compressive sensing camera to efficiently characterize, at high resolution, the spatially entangled fields produced by spontaneous parametric downconversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster-scanning by a scaling factor up to n^2/log(n) for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates compressive sensing can be especially effective for higher-order measurements on correlated systems.Comment: 10 pages, 7 figure

    Apparatus for measuring charged particle beam

    Get PDF
    An apparatus to measure the incident charged particle beam flux while effectively eliminating losses to reflection and/or secondary emission of the charged particle beam being measured is described. It comprises a sense cup through which the charged particle beam enters. A sense cone forms the rear wall of the interior chamber with the cone apex adjacent the entry opening. An outer case surrounds the sense cup and is electrically insulated therefrom. Charged particles entering the interior chamber are trapped and are absorbed by the sense cup and cone and travel through a current measuring device to ground

    A Bayesian Periodogram Finds Evidence for Three Planets in 47 Ursae Majoris

    Full text link
    A Bayesian analysis of 47 Ursae Majoris (47 UMa) radial velocity data confirms and refines the properties of two previously reported planets with periods of 1079 and 2325 days and finds evidence for an additional long period planet with a period of approximately 10000 days. The three planet model is found to be 10^5 times more probable than the next most probable model which is a two planet model. The nonlinear model fitting is accomplished with a new hybrid Markov chain Monte Carlo (HMCMC) algorithm which incorporates parallel tempering, simulated annealing and genetic crossover operations. Each of these features facilitate the detection of a global minimum in chi-squared. By combining all three, the HMCMC greatly increases the probability of realizing this goal. When applied to the Kepler problem it acts as a powerful multi-planet Kepler periodogram. The measured periods are 1078 \pm 2, 2391{+100}{-87}, and 14002{+4018}{-5095}d, and the corresponding eccentricities are 0.032 \pm 0.014, 0.098{+.047}{-.096}, and 0.16{+.09}{-.16}. The results favor low eccentricity orbits for all three. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by planets, the corresponding limits on planetary mass (M sin i) and semi-major axis are (2.53{+.07}{-.06}MJ, 2.10\pm0.02au), (0.54\pm0.07MJ, 3.6\pm0.1au), and (1.6{+0.3}{-0.5}MJ, 11.6{+2.1}{-2.9}au), respectively. We have also characterized a noise induced eccentricity bias and designed a correction filter that can be used as an alternate prior for eccentricity, to enhance the detection of planetary orbits of low or moderate eccentricity

    National Newspaper Analysis of the Press Coverage of Jesse Jackson\u27s 1984 Presidential Campaign: The Confirmation of the Candidate

    Get PDF
    Jesse Jackson\u27s 1984 and 1988 presidential campaigns have motivated thousands of citizens throughout America to take a more active role in politics. The 1984 campaign witnessed many previously unregistered Americans actively participating in Jackson\u27s call to join the Rainbow Coalition. Four years later, Jackson once again hit a responsive chord within the American electorate, broadening his support base in his second run for the White House. His vibrant campaigns presented challenges not only to the American system of government, but also to accepted journalistic traditions in campaign reporting. Specifically, the dilemma has been a difficult one for journalists responsible for campaign coverage. How much coverage should a reporter give to Jesse Jackson\u27s campaign? Should he be treated like an Alan Cranston or Gary Hart in 1984, or a Paul Simon or Albert Gore in 1988? Or does the historical impact of his being the first black candidate to make a serious bid for the presidency warrant a different approach to press coverage? Highlighting this dilemma in the 1984 campaign, Dates and Gandy note: Jackson\u27s candidacy was a challenge for the press because on the one hand journalistic traditions would dictate that the ideological orientation of the media organization would constrain its coverage to be consistent with longstanding editorial practice.[1

    Compressive Wavefront Sensing with Weak Values

    Get PDF
    We demonstrate a wavefront sensor based on the compressive sensing, single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a variable waveplate, we weakly couple an optical field's transverse-position and polarization degrees of freedom. By placing random, binary patterns on the SLM, polarization serves as a meter for directly measuring random projections of the real and imaginary components of the wavefront. Compressive sensing techniques can then recover the wavefront. We acquire high quality, 256x256 pixel images of the wavefront from only 10,000 projections. Photon-counting detectors give sub-picowatt sensitivity

    Winds and Waves (4 Min - 11 Yrs) in the Upper Middle Atmosphere (60-110 Km) at Saskatoon, Canada (52 Deg N, 107 Deg W): MF Radar (2.2 Mhz) Soundings 1973 - 1983

    Get PDF
    Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data

    Dissipation-Scale Turbulence in the Solar Wind

    Get PDF
    We present a cascade model for turbulence in weakly collisional plasmas that follows the nonlinear cascade of energy from the large scales of driving in the MHD regime to the small scales of the kinetic Alfven wave regime where the turbulence is dissipated by kinetic processes. Steady-state solutions of the model for the slow solar wind yield three conclusions: (1) beyond the observed break in the magnetic energy spectrum, one expects an exponential cut-off; (2) the widely held interpretation that this dissipation range obeys power-law behavior is an artifact of instrumental sensitivity limitations; and, (3) over the range of parameters relevant to the solar wind, the observed variation of dissipation range spectral indices from -2 to -4 is naturally explained by the varying effectiveness of Landau damping, from an undamped prediction of -7/3 to a strongly damped index around -4.Comment: 6 pages, 2 figures, accepted for publication in AIP Conference Proceedings on "Turbulence and Nonlinear Processes in Astrophysical Plasmas
    corecore