We demonstrate a wavefront sensor based on the compressive sensing,
single-pixel camera. Using a high-resolution spatial light modulator (SLM) as a
variable waveplate, we weakly couple an optical field's transverse-position and
polarization degrees of freedom. By placing random, binary patterns on the SLM,
polarization serves as a meter for directly measuring random projections of the
real and imaginary components of the wavefront. Compressive sensing techniques
can then recover the wavefront. We acquire high quality, 256x256 pixel images
of the wavefront from only 10,000 projections. Photon-counting detectors give
sub-picowatt sensitivity