1,434 research outputs found

    On the peculiarities in the rotational frequency evolution of isolated neutron stars

    Get PDF
    The measurements of pulsar frequency second derivatives have shown that they are 10210610^2-10^6 times larger than expected for standard pulsar spin-down law, and are even negative for about half of pulsars. We explain these paradoxical results on the basis of the statistical analysis of the rotational parameters ν\nu, ν˙\dot \nu and ν¨\ddot \nu of the subset of 295 pulsars taken mostly from the ATNF database. We have found a strong correlation between ν¨\ddot \nu and ν˙\dot \nu for both ν¨>0\ddot\nu > 0 and ν¨<0\ddot\nu < 0, as well as between ν\nu and ν˙\dot\nu. We interpret these dependencies as evolutionary ones due to ν˙\dot\nu being nearly proportional to the pulsars' age. The derived statistical relations as well as "anomalous" values of ν¨\ddot\nu are well described by assuming the long-time variations of the spin-down rate. The pulsar frequency evolution, therefore, consists of secular change of νev(t)\nu_{ev}(t), ν˙ev(t)\dot\nu_{ev}(t) and ν¨ev(t)\ddot\nu_{ev}(t) according to the power law with n5n \approx 5, the irregularities, observed within a timespan as a timing noise, and the variations on the timescale larger than that timespan -- several tens of years.Comment: 4 pages, 3 figures. Accepted for publication in ApSS, in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface", London, April 2006; eds. S. Zane, R. Turolla and D. Pag

    Resonance in Asymmetric Warped Geometry

    Full text link
    We study the spectrum of an asymmetric warped braneworld model with different AdS curvatures on either side of the brane. In addition to the RS-like modes we find a resonance state. Its mass is proportional to the geometric mean of the two AdS curvature scales, while the difference between them determines the strength of the resonance peak. There is a complementarity between the RS zero-mode and the resonance: making the asymmetry stronger weakens the zero-mode but strengthens the resonance, and vice versa. We calculate numerically the braneworld gravitational potential and discuss the holographic correspondence for the asymmetric model.Comment: 17 pages, 9 figures; v2 references with comments added; v3 two references added, JHEP versio

    Robust storage qubits in ultracold polar molecules

    Get PDF
    Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, to reach the longest possible coherence times. Here we fully characterize the dominant mechanisms of decoherence for a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal a subtle differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarized trap light and the applied magnetic field to a magic angle of arccos(1/3–√)≈55∘. This leads to a coherence time exceeding 5.6 s at the 95% confidence level

    Topological censorship for Kaluza-Klein space-times

    Full text link
    The standard topological censorship theorems require asymptotic hypotheses which are too restrictive for several situations of interest. In this paper we prove a version of topological censorship under significantly weaker conditions, compatible e.g. with solutions with Kaluza-Klein asymptotic behavior. In particular we prove simple connectedness of the quotient of the domain of outer communications by the group of symmetries for models which are asymptotically flat, or asymptotically anti-de Sitter, in a Kaluza-Klein sense. This allows one, e.g., to define the twist potentials needed for the reduction of the field equations in uniqueness theorems. Finally, the methods used to prove the above are used to show that weakly trapped compact surfaces cannot be seen from Scri.Comment: minor correction

    Classical and Thermodynamic Stability of Black Branes

    Get PDF
    It is argued that many non-extremal black branes exhibit a classical Gregory-Laflamme instability if, and only if, they are locally thermodynamically unstable. For some black branes, the Gregory-Laflamme instability must therefore disappear near extremality. For the black pp-branes of the type II supergravity theories, the Gregory-Laflamme instability disappears near extremality for p=1,2,4p=1,2,4 but persists all the way down to extremality for p=5,6p=5,6 (the black D3-brane is not covered by the analysis of this paper). This implies that the instability also vanishes for the near-extremal black M2 and M5-brane solutions.Comment: 21 pages, LaTeX. v2: Various points clarified, typos corrected and reference adde

    Localized Tachyons and the Quantum McKay Correspondence

    Full text link
    The condensation of closed string tachyons localized at the fixed point of a C^d/\Gamma orbifold can be studied in the framework of renormalization group flow in a gauged linear sigma model. The evolution of the Higgs branch along the flow describes a resolution of singularities via the process of tachyon condensation. The study of the fate of D-branes in this process has lead to a notion of a ``quantum McKay correspondence.'' This is a hypothetical correspondence between fractional branes in an orbifold singularity in the ultraviolet with the Coulomb and Higgs branch branes in the infrared. In this paper we present some nontrivial evidence for this correspondence in the case C^2/Z_n by relating the intersection form of fractional branes to that of ``Higgs branch branes,'' the latter being branes which wrap nontrivial cycles in the resolved space.Comment: 25 pages; harvma

    Core Structure of Global Vortices in Brane World Models

    Full text link
    We study analytically and numerically the core structure of global vortices forming on topologically deformed brane-worlds with a single toroidally compact extra dimension. It is shown that for an extra dimension size larger than the scale of symmetry breaking the magnitude of the complex scalar field at the vortex center can dynamically remain non-zero. Singlevaluedness and regularity are not violated. Instead, the winding escapes to the extra dimension at the vortex center. As the extra dimension size decreases the field magnitude at the core dynamically decreases also and in the limit of zero extra dimension size we reobtain the familiar global vortex solution. Extensions to other types of defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure

    Cosmology of codimension-two braneworlds

    Full text link
    We present a comprehensive study of the cosmological solutions of 6D braneworld models with azimuthal symmetry in the extra dimensions, moduli stabilization by flux or a bulk scalar field, and which contain at least one 3-brane that could be identified with our world. We emphasize an unusual property of these models: their expansion rate depends on the 3-brane tension either not at all, or in a nonstandard way, at odds with the naive expected dimensional reduction of these systems to 4D general relativity at low energies. Unlike other braneworld attempts to find a self-tuning solution to the cosmological constant problem, the apparent failure of decoupling in these models is not associated with the presence of unstabilized moduli; rather it is due to automatic cancellation of the brane tension by the curvature induced by the brane. This provides some corroboration for the hope that these models provide a distinctive step toward understanding the smallness of the observed cosmological constant. However, we point out some challenges for obtaining realistic cosmology within this framework.Comment: 30 pages, 4 figures; generalized result for nonconventional Friedmann equation, added referenc
    corecore