6 research outputs found

    FIBRILLATION OF FLAX AND WHEAT STRAW CELLULOSE: EFFECTS ON THERMAL, MORPHOLOGICAL, AND VISCOELASTIC PROPERTIES OF POLY(VINYLALCOHOL)/FIBRE COMPOSITES

    Get PDF
    Nano-fibrillated cellulose was produced from flax and wheat straw cellulose pulps by high pressure disintegration. The reinforcing potential of both disintegrated nano-celluloses in a polyvinyl-alcohol matrix was evaluated. Disintegration of wheat straw was significantly more time and energy consuming. Disintegration did not lead to distinct changes in the degree of polymerization; however, the fibre diameter reduction was more than a hundredfold, creating a nano-fibrillated cellulose network, as shown through field-emission-scanning electron microscopy. Composite films were prepared from polyvinyl alcohol and filled with nano-fibrillated celluloses up to 40% mass fractions. Nano-fibrillated flax showed better dispersion in the polyvinyl alcohol matrix, compared to nano-fibrillated wheat straw. Dynamic mechanical analysis of composites revealed that the glass transition and rubbery region increased more strongly with included flax nano-fibrils. Intermolecular interactions between cellulose fibrils and polyvinyl alcohol matrix were shown through differential scanning calorimetry and attenuated total reflection-Fourier transform infrared spectroscopy. The selection of appropriate raw cellulose material for high pressure disintegration was an indispensable factor for the processing of nano-fibrillated cellulose, which is essential for the functional optimization of products

    Pulp Fiber Bending Stiffness in Wet and Dry State Measured from Moment of Inertia and Modulus of Elasticity

    No full text
    The bending stiffness of pulp fibers in both dry and wet states is of great importance with respect to many optical and physical paper properties. We introduce a method that evaluates fiber bending stiffness from the fibers’ Young’s modulus (E) and the area moment of inertia (I) from the fiber cross section. The values for E and I in the dry state are obtained from single fiber tensile testing and image analysis of the fiber cross section. The values for the wet state are estimated from literature results for decreasing elastic modulus due to wetting and by the measurement of swollen, freeze-dried fiber cross sections by serial sectioning. We show a comparison between the results from our method and the bending stiffness of individual fibers measured with other methods
    corecore