21 research outputs found

    Particle-hole excited states in 133 Te

    Get PDF
    Excited states in neutron-rich 133Te{}^{133}\mathrm{Te} have been identified with the Gamma sphere array by measuring three- and higher-fold prompt coincidence events following spontaneous fission of 252Cf.{}^{252}\mathrm{Cf}. Four types of particle-hole bands built on the known 334.3 keV isomer in 133Te{}^{133}\mathrm{Te} are identified. The yrast and near yrast particle-hole states observed up to 6.2 MeV in 133Te{}^{133}\mathrm{Te} have characteristics quite similar to those in 134Te.{}^{134}\mathrm{Te}. These states are interpreted as a result of coupling a neutron \ensuremath{\nu}{h}_{11/2} hole to the 134Te{}^{134}\mathrm{Te} core. The group of states observed above 5.214 MeV is the result of a neutron particle-hole excitation of the double magic core nucleus 132Sn,{}^{132}\mathrm{Sn}, and is a candidate for a tilted rotor band. Shell-model calculations considering 132Sn{}^{132}\mathrm{Sn} as a closed core have been performed and have provided guidance to the interpretation of the levels below 4.3 MeV. Very good agreement between theory and experiment is obtained for these states

    Decay and Fission Hindrance of Two- and Four-Quasiparticle K Isomers in (254)Rf

    Get PDF
    Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73)μs have been discovered in the heavy Rf254 nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the Kπ=8-, ν2(7/2+[624],9/2-[734]) two-quasineutron and the Kπ=16+, 8-ν2(7/2+[624],9/2-[734])⊗ - 8-π2(7/2-[514],9/2+[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the Rf254 ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1)μs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state

    Experimental Techniques

    No full text
    corecore