13,525 research outputs found

    Affordable, Entropy Conserving and Entropy Stable Flux Functions for the Ideal MHD Equations

    Full text link
    In this work, we design an entropy stable, finite volume approximation for the ideal magnetohydrodynamics (MHD) equations. The method is novel as we design an affordable analytical expression of the numerical interface flux function that discretely preserves the entropy of the system. To guarantee the discrete conservation of entropy requires the addition of a particular source term to the ideal MHD system. Exact entropy conserving schemes cannot dissipate energy at shocks, thus to compute accurate solutions to problems that may develop shocks, we determine a dissipation term to guarantee entropy stability for the numerical scheme. Numerical tests are performed to demonstrate the theoretical findings of entropy conservation and robustness.Comment: arXiv admin note: substantial text overlap with arXiv:1509.06902; text overlap with arXiv:1007.2606 by other author

    Studies of non-magnetic impurities in the spin-1/2 Kagome Antiferromagnet

    Get PDF
    Motivated by recent experiments on ZnCu3_3(OH)6_6Cl2_2, we study the inhomogeneous Knight shifts (local susceptibilities) of spin 1/2 Kagome antiferromagnet in the presence of nonmagnetic impurities. Using high temperature series expansion, we calculate the local susceptibility and its histogram down to about T=0.4J. At low temperatures, we explore a Dirac spin liquid proposal and calculate the local susceptibility in the mean field and beyond mean field using Gutzwiller projection, finding the overall picture to be consistent with the NMR experiments.Comment: 12 pages, 9 figure

    Deformations of Gabor Frames

    Full text link
    The quantum mechanical harmonic oscillator Hamiltonian generates a one-parameter unitary group W(\theta) in L^2(R) which rotates the time-frequency plane. In particular, W(\pi/2) is the Fourier transform. When W(\theta) is applied to any frame of Gabor wavelets, the result is another such frame with identical frame bounds. Thus each Gabor frame gives rise to a one-parameter family of frames, which we call a deformation of the original. For example, beginning with the usual tight frame F of Gabor wavelets generated by a compactly supported window g(t) and parameterized by a regular lattice in the time-frequency plane, one obtains a family of frames F_\theta generated by the non-compactly supported windows g_\theta=W(theta)g, parameterized by rotated versions of the original lattice. This gives a method for constructing tight frames of Gabor wavelets for which neither the window nor its Fourier transform have compact support. When \theta=\pi/2, we obtain the well-known Gabor frame generated by a window with compactly supported Fourier transform. The family F_\theta therefore interpolates these two familiar examples.Comment: 8 pages in Plain Te

    Robust Optimal Risk Sharing and Risk Premia in Expanding Pools

    Full text link
    We consider the problem of optimal risk sharing in a pool of cooperative agents. We analyze the asymptotic behavior of the certainty equivalents and risk premia associated with the Pareto optimal risk sharing contract as the pool expands. We first study this problem under expected utility preferences with an objectively or subjectively given probabilistic model. Next, we develop a robust approach by explicitly taking uncertainty about the probabilistic model (ambiguity) into account. The resulting robust certainty equivalents and risk premia compound risk and ambiguity aversion. We provide explicit results on their limits and rates of convergence, induced by Pareto optimal risk sharing in expanding pools

    Mental Health in the Workplace: Situation Analyses, Germany

    Get PDF
    [From Introduction] The ILO’s primary goals regarding disability are to prepare and empower people with disabilities to pursue their employment goals and facilitate access to work and job opportunities in open labour markets, while sensitising policy makers, trade unions and employers to these issues. The ILO’s mandate on disability issues is specified in the ILO Convention 159 (1983) on vocational rehabilitation and employment. No. 159 defines a disabled person as an individual whose prospects of securing, retaining, and advancing in suitable employment are substantially reduced as a result of a duly recognised physical or mental impairment. The Convention established the principle of equal treatment and employment for workers with disabilities

    Bounding Bloat in Genetic Programming

    Full text link
    While many optimization problems work with a fixed number of decision variables and thus a fixed-length representation of possible solutions, genetic programming (GP) works on variable-length representations. A naturally occurring problem is that of bloat (unnecessary growth of solutions) slowing down optimization. Theoretical analyses could so far not bound bloat and required explicit assumptions on the magnitude of bloat. In this paper we analyze bloat in mutation-based genetic programming for the two test functions ORDER and MAJORITY. We overcome previous assumptions on the magnitude of bloat and give matching or close-to-matching upper and lower bounds for the expected optimization time. In particular, we show that the (1+1) GP takes (i) Θ(Tinit+nlogn)\Theta(T_{init} + n \log n) iterations with bloat control on ORDER as well as MAJORITY; and (ii) O(TinitlogTinit+n(logn)3)O(T_{init} \log T_{init} + n (\log n)^3) and Ω(Tinit+nlogn)\Omega(T_{init} + n \log n) (and Ω(TinitlogTinit)\Omega(T_{init} \log T_{init}) for n=1n=1) iterations without bloat control on MAJORITY.Comment: An extended abstract has been published at GECCO 201

    Quantum transport of disordered Weyl semimetals at the nodal point

    Get PDF
    Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the degeneracy point and without interactions, theory predicts the existence of a critical disorder strength beyond which the density of states takes on a nonzero value. Predictions for the conductivity are divergent, however. In this work, we present a numerical study of transport properties for a disordered Weyl cone at zero energy. For weak disorder our results are consistent with a renormalization group flow towards an attractive pseudoballistic fixed point with zero conductivity and a scale-independent conductance; for stronger disorder diffusive behavior is reached. We identify the Fano factor as a signature that discriminates between these two regimes
    corecore