12 research outputs found

    Visualizing the genome: techniques for presenting human genome data and annotations

    Get PDF
    BACKGROUND: In order to take full advantage of the newly available public human genome sequence data and associated annotations, biologists require visualization tools ("genome browsers") that can accommodate the high frequency of alternative splicing in human genes and other complexities. RESULTS: In this article, we describe visualization techniques for presenting human genomic sequence data and annotations in an interactive, graphical format. These techniques include: one-dimensional, semantic zooming to show sequence data alongside gene structures; color-coding exons to indicate frame of translation; adjustable, moveable tiers to permit easier inspection of a genomic scene; and display of protein annotations alongside gene structures to show how alternative splicing impacts protein structure and function. These techniques are illustrated using examples from two genome browser applications: the Neomorphic GeneViewer annotation tool and ProtAnnot, a prototype viewer which shows protein annotations in the context of genomic sequence. CONCLUSION: By presenting techniques for visualizing genomic data, we hope to provide interested software developers with a guide to what features are most likely to meet the needs of biologists as they seek to make sense of the rapidly expanding body of public genomic data and annotations

    Genoviz Software Development Kit: Java tool kit for building genomics visualization applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualization software can expose previously undiscovered patterns in genomic data and advance biological science.</p> <p>Results</p> <p>The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities.</p> <p>Conclusion</p> <p>Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at <url>http://genoviz.sourceforge.net/</url>.</p

    Web Apollo: a web-based genomic annotation editing platform

    No full text
    Abstract Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world

    Web Apollo: a web-based genomic annotation editing platform

    Get PDF
    Abstract Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world

    Novel RNAs Identified From an In-Depth Analysis of the Transcriptome of Human Chromosomes 21 and 22

    No full text
    In this report, we have achieved a richer view of the transcriptome for Chromosomes 21 and 22 by using high-density oligonucleotide arrays on cytosolic poly(A)(+) RNA. Conservatively, only 31.4% of the observed transcribed nucleotides correspond to well-annotated genes, whereas an additional 4.8% and 14.7% correspond to mRNAs and ESTs, respectively. Approximately 85% of the known exons were detected, and up to 21% of known genes have only a single isoform based on exon-skipping alternative expression. Overall, the expression of the well-characterized exons falls predominately into two categories, uniquely or ubiquitously expressed with an identifiable proportion of antisense transcripts. The remaining observed transcription (49.0%) was outside of any known annotation. These novel transcripts appear to be more cell-line-specific and have lower and less variation in expression than the well-characterized genes. Novel transcripts were further characterized based on their distance to annotations, transcript size, coding capacity, and identification as antisense to intronic sequences. By RT-PCR, 126 novel transcripts were independently verified, resulting in a 65% verification rate. These observations strongly support the argument for a re-evaluation of the total number of human genes and an alternative term for “gene” to encompass these growing, novel classes of RNA transcripts in the human genome
    corecore