10 research outputs found

    Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos

    Get PDF
    Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape. Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally. Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development

    Japanese Quail: An Efficient Animal Model for the Production of Transgenic Avians

    No full text
    The ability to generate transgenic mice has been a powerful tool in studying functional genomics, and much of our knowledge about developmental biology has come from the study of chicken embryology. Unfortunately, the availability of molecular genetic techniques, such as transgenics and knockouts, has been limited for developmental biologists using avian animal models. Efforts to develop a system for the rapid production of transgenic chickens have met with many obstacles, including high animal husbandry costs and long generational times. Recently, the Japanese quail has proven to be an excellent model organism for the production of transgenic avians using lentiviral vectors. The relatively small size of the adults, short time to sexual maturity, and prodigious egg production of the Japanese quail make development of transgenic lines less labor- and space-intensive compared to chickens. The high degree of homology between chicken and quail genomes allows researchers to design highly specific DNA constructs for the production of transgenic birds. In addition, transgenic quail offer all of the advantages of the classic avian developmental model system, such as the ability to readily produce quail:chick transplant chimeras. Finally, Japanese quail are ideal for in ovo imaging of embryos expressing fluorescent reporters introduced from a transgene and/or electroporation. Here, we provide detailed methods for generating transgenic quail using high-titer lentivirus

    Japanese quail (Coturnix japonica) as a laboratory animal model

    No full text
    For the past 50 years, the Japanese quail (Coturnix japonica) has been a popular animal model in numerous fields of research. The quail’s 16-d developmental period and its easily accessible embryo make C. japonica a convenient model for studies of developmental biology. Because its lifespan is relatively short and its physiology is comparable to that of humans, the adult quail is useful for studies of aging and disease. The authors describe the Japanese quail as an animal model and, drawing on their experience raising a quail colony at the California Institute of Technology, present detailed guidelines for the husbandry of the species

    Transgenic quail as a model for research in the avian nervous system: A comparative study of the auditory brainstem

    No full text
    Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proved problematic. As a result, experiments aimed at genetic manipulations on birds have remained difficult for this popular research tool. Recently, lentiviral methods have allowed the production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal specificity and stable expression of enhanced green fluorescent protein (eGFP) across generations (termed here GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of genetic manipulation, we compared the development, organization, structure, and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) with that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM), and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken

    Apprenticeship and training in premodern England

    Get PDF
    This paper re-examines the economics of premodern apprenticeship in England. I present new data showing that a high proportion of apprenticeships in seventeenth century London ended before the term of service was finished. I then propose a new account of how training costs and repayments were distributed over the apprenticeship contract such that neither master or apprentice risked significant loss from early termination. This new account fits with the characteristics of premodern apprenticeship, as well as with what is known about the acquisition of skills in modern and premodern societies

    Cancer Informatics for Cancer Centers: Scientific Drivers for Informatics, Data Science, and Care in Pediatric, Adolescent, and Young Adult Cancer

    No full text
    Cancer Informatics for Cancer Centers (CI4CC) is a grassroots, nonprofit 501c3 organization intended to provide a focused national forum for engagement of senior cancer informatics leaders, primarily aimed at academic cancer centers anywhere in the world but with a special emphasis on the 70 National Cancer Institute-funded cancer centers. This consortium has regularly held topic-focused biannual face-to-face symposiums. These meetings are a place to review cancer informatics and data science priorities and initiatives, providing a forum for discussion of the strategic and pragmatic issues that we faced at our respective institutions and cancer centers. Here, we provide meeting highlights from the latest CI4CC Symposium, which was delayed from its original April 2020 schedule because of the COVID-19 pandemic and held virtually over three days (September 24, October 1, and October 8) in the fall of 2020. In addition to the content presented, we found that holding this event virtually once a week for 6 hours was a great way to keep the kind of deep engagement that a face-to-face meeting engenders. This is the second such publication of CI4CC Symposium highlights, the first covering the meeting that took place in Napa, California, from October 14-16, 2019. We conclude with some thoughts about using data science to learn from every child with cancer, focusing on emerging activities of the National Cancer Institute\u27s Childhood Cancer Data Initiative
    corecore