131 research outputs found

    Methods for calculating noise transmitted to the inside of space vehicles from random loading on the outside. Preliminary ideas and basic equations Technical report no. 4

    Get PDF
    Equations for computing noise transmitted to space vehicle inside from random loading on outsid

    Modelling of spacecraft under random loading

    Get PDF
    Modeling laws for space vehicles under random dynamic loadin

    Chronic Use of a Sensitized Bionic Hand Does Not Remap the Sense of Touch

    Get PDF
    Electrical stimulation of tactile nerve fibers that innervated an amputated hand results in vivid sensations experienced at a specific location on the phantom hand, a phenomenon that can be leveraged to convey tactile feedback through bionic hands. Ideally, electrically evoked sensations would be experienced on the appropriate part of the hand: touch with the bionic index fingertip, for example, would elicit a sensation experienced on the index fingertip. However, the perceived locations of sensations are determined by the idiosyncratic position of the stimulating electrode in the nerve and thus are difficult to predict or control. This problem could be circumvented if perceived sensations shifted over time to become consistent with the position of the sensor that triggers them. We show that, after long-term use of a neuromusculoskeletal prosthesis that featured a mismatch between the sensor location and the resulting tactile experience, the perceived location of the touch did not change

    Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays

    Get PDF
    The dorsal spinal cord (DH) is a complex laminar structure integrating peripheral signals into the central nervous system. Spinal somatosensory processing is commonly measured electrophysiologically in vivo by recording the activity of individual Wide Dynamic Range neurons in the deep DH and extrapolating their behaviour to all cells in every lamina. This fails to account for the specialised processes that occur in each lamina and the considerable heterogeneity in cellular phenotype within and between laminae. Here we overcome this oversimplification by employing linear multi‐electrode arrays (MEAs) in the DH of anaesthetized rats to simultaneously measure activity across all laminae. The MEAs, comprised of 16‐channels, were inserted into the lumbar dorsal horn and peripheral neurones activated electrically via transcutaneous electrodes and ethologically with von Frey hairs (vFh) or an aluminium heating block. Ascending electrical stimuli showed fibre thresholds with distinct dorso‐ventral innervation profiles. Wind up was observed across the DH during the C‐fibre and post‐discharge latencies following 0.5Hz stimulation. Intrathecal application of morphine (5ng/50ul) significantly reduced Aδ and C‐fibre evoked activity in deep and superficial DH. Light vFhs (≤10g) predominantly activated intermediate and deep laminae whereas noxious vFh (26g) also activated the superficial laminae. Noxious heat (55°C) induced significantly greater activity in the superficial and deep laminae than the innocuous control (30°C). The application of these arrays produced the first description of the processing of innocuous and noxious stimuli throughout the intact DH

    Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex

    Get PDF
    The primary motor (M1) and somatosensory (S1) cortices play critical roles in motor control but the signaling between these structures is poorly understood. To fill this gap, we recorded – in three participants in an ongoing human clinical trial (NCT01894802) for people with paralyzed hands – the responses evoked in the hand and arm representations of M1 during intracortical microstimulation (ICMS) in the hand representation of S1. We found that ICMS of S1 activated some M1 neurons at short, fixed latencies consistent with monosynaptic activation. Additionally, most of the ICMS-evoked responses in M1 were more variable in time, suggesting indirect effects of stimulation. The spatial pattern of M1 activation varied systematically: S1 electrodes that elicited percepts in a finger preferentially activated M1 neurons excited during that finger’s movement. Moreover, the indirect effects of S1 ICMS on M1 were context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS conveyed tactile feedback. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption was minimized using biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, and reduces sustained stimulation

    Ventricular pacing or dual-chamber pacing for sinus-node dysfunction

    Get PDF
    BACKGROUND Dual-chamber (atrioventricular) and single-chamber (ventricular) pacing are alternative treatment approaches for sinus-node dysfunction that causes clinically significant bradycardia. However, it is unknown which type of pacing results in the better outcome. METHODS We randomly assigned a total of 2010 patients with sinus-node dysfunction to dual-chamber pacing (1014 patients) or ventricular pacing (996 patients) and followed them for a median of 33.1 months. The primary end point was death from any cause or nonfatal stroke. Secondary end points included the composite of death, stroke, or hospitalization for heart failure; atrial fibrillation; heart-failure score; the pacemaker syndrome; and the quality of life. RESULTS The incidence of the primary end point did not differ significantly between the dual-chamber group (21.5 percent) and the ventricular-paced group (23.0 percent, P=0.48). In patients assigned to dual-chamber pacing, the risk of atrial fibrillation was lower (hazard ratio, 0.79; 95 percent confidence interval, 0.66 to 0.94; P=0.008), and heart-failure scores were better (P CONCLUSIONS In sinus-node dysfunction, dual-chamber pacing does not improve stroke-free survival, as compared with ventricular pacing. However, dual-chamber pacing reduces the risk of atrial fibrillation, reduces signs and symptoms of heart failure, and slightly improves the quality of life. Overall, dual-chamber pacing offers significant improvement as compared with ventricular pacing
    corecore