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ABSTRACT / 4 é é L/

This report discusses the basic equations that can be used in computing
the noise transmitted to the inside of a shell or shroud from random
loading on the outside. The cylindrical shell is treated in some detail

and the general relations for an arbitrary structure are prei;g:jzit4£{jJ
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LIST OF SYMBOLS

a%(-f,).fz)u)) cross spectral density between normal acceleration at points
S, and 5-1_ on the surface of the structure at frequency w

circular frequency

G(P P w) cross spectral density of inside pressure at points P  and
2 /
Pz_ at frequency W

P,) P;_ points in the pressure field

%f'n. (s,) componient of the rth modal vector which is normal to the
surface at point S,

? £ (s,.) component of the .4 th modal vector which is normal to the
" * ;
surface at point &,

lw) = M N\f(wr-p ) rewrys * , the frequency response
function for the rth mode
//O B natural frequency of the rth mode
vo = & [ 52 gadv
\%
K, damping force per unit volume per unit velocity for rth
mode of vibration
M, = f/[p (?':. g‘:)d\/ . the generalized mass of the rth
A%
mede
—>
er the modal vector for the rth mode
- =
5,— 2 U, L + A *‘MA
U}) /u';J,uf, orthogonal components of the rth modal vector
C,_A joint acceptance or correlation integral
9,. phase angle for rth mode
a a symbol indicating the surface of the structure
\V4 a symbol indicating the structural volume (includes all

parts of the vibrating 'structure but does not include the
volume of the air space)
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} *(ey SZ.J 4\))
5

wrzf t)
P
“
z

a Green's Function which vanishes over the surface of the
structure; A,, S, refer to points in the space with rec-
tangular coordinates ¥,, %, #,

the complex conjugate of g(P S,a» referred to coordinates
in the X%, #, space

2
density of the fluid inside the shroud
radial displacement of a cylinder
longitudinal coordinate

peripheral coordinate

time

/M;,(t)él Jft)functions of-time associated with the radial displacement

e

7o
L

of the-cylinder

number ofaxial half waves in the vibration pattern of the
cylinder

number- of full circumferential waves in the  vibration pattern

length of the cylinder

M’?{Z}& Z;JW) cross spectral density of displacement at points £X,, J and

X, ‘/a. on the cylinder

frequency response function for lateral displacement

3 C&/..,‘»\J'w,\j Cu*_.umw correlation integrals (or joint accept-

ances) for the cylinder

5‘;({”47” ?1-)"71-) w) cross spectral density of pressure ex-

§

a

Prfx )

M

-

citing the outside of the structure
integration variables for‘ﬁ,qﬂ respectively
radius of the cylinder

auto spectral density of in 51d ' pressure at point with cy-

lindrical coordinates r,¢ X is the radial distance from

the axis of the cylinder to any point)
frequency response function for inside pressure
Bessel Function of order 2

indices associated with inside Green's Function of a cylin-
der which has a finite radiating source

velocity of sound in the air inside the shroud
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convection velocity of turbulence (.65 U, where U is the
flow velocity

0(”@) ): S empirical constants associated with general relation for
jet or boundary layer noise
/-2’2.7:.; é J’w)general relation for cross spectral density of pressure
agssoriated with jet or boundary layer noise

R

ﬁ(w) auto spectral density of jet or boundary layer noise
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I.

IT.

Introduction

Space vehicles are contained within shrouds which are- subjected to the
outside dyanmic environment during launching and flight. There are two
main paths by which the space vehicle can receive the loads. One is
the air path through the skin of the shroud and the other is the struc-
tural path thrpugh the attachments of the space vehicle to the shroud
and booster. The emphasis in this report will be on noise transmitted
through the air inside from random vibration of the casing. To this
author's knowledge the first studies of problems of this type were
given by Dyer. This present study is an extension and generaliza-
tion of Dyer's work.

General equations
A. An arbitrary structure

For a built up elastic structure subjected to random loading the
cross spectral density between the normal acceleration at any two
points_of the structure can be obtained by an extension of Powell's

theory given by the present author. '’ This cross spectral den-
(S )b C5s - (6-8z)
A (S, 5,00) = 0! % g

Cra = [ [ G55 0) §on(5) §aC5) Ao Ao
where

C;(’ aa) is the cross spectral density of the exciting pressure
between points S,and 82 at frequency &

7?rn'ﬁ;) is the normal component of the rth mode evaluated at
point S, of the surface

74“' (S,.) is the normal component of the kth mode evaluated at

point 82 of the surface

/Yﬁﬁd)/ = ﬁﬂ,\/?%u*—fp‘)‘# Vf%u“ , the frequency response function
5, = Law'¥%  the phase angle

’l.w =
79, is the natural frequency of the rth mode

;.,“:f /fo(j:'j':)dv

G/V/ = element of volume of the body
K

damping force per unit volume per unit velocity



"'//f (g’ Zf)c/v the generalized mass

mass density of structural material

F
f = ’Z?rqor

where g is the total displacement in some desired direction,‘gr
is the modal displacement in that direction and ¢% is the gen-
eralized coordinate for the rth mode

The noise transmitted inside a structure from induced vibrations of the
surface can be obtained by employing an extension of Parrxent's Theory
given by the present author in report referred to above. In that re-
port the cross spectral density of the field pressure in the medium out-
side a vibrating surface was obtained. By analogous reasoning the sta-
tistics of the pressure inside a randomly vibrating surface can be
written in terms of pressure cross spectral density, & (B, P, w) as
follows:

where G ( R, 7 ;,bJ) is the cross spectral density of the pressure
inside the structure at points Pl and P2 at frequency @
¢ﬂh( QJ) is the cross spectral density of the normal acceleration at

the surface

é;(ﬁﬁ,ngo) is the Green's Function for the medium inside of the struc-
ture whose normal derivative vanishes over the surface of
the structure
(It is the response at inside point f? due to unit sinusoidal
load of frequency w at surface point Sl.)

ﬁ,"‘(&s t)is the complex conjugate of ?.(P“ S,,w) referred to coordi-

v nates in the 2, ‘%4 2. space
- l) -

@) denotes the vibrating surface

Equations [1l] and [2] constitute the set of equations to determine the
noise inside a structure which is exposed to random pressure of known
cross spectral density, C;('Sb Jl)au) on the surface of the structure.
The cross spectral density of the normal acceleration, &,. (S, 53, w ) in
[1] is a function of the mode shapes, f},\, the frequency response func-
tion , Yr, and other computable parameters which can be obtained from

the characteristics of the structure and the loading. The pressure trans-
mitted to the inside is given by [2] and is dependent on the normal sur-

face acceleration [1l] and the inside Green's Function which theoretically



can be computed from acoustic theory. Of course there are some practi-
cal difficulties in obtaining these Green's Functions in the same way
that there are practical difficulties in obtaining mode shapes and fre-
quencies to use in [1]; however for relatively simple shapes and special
cases such as low frequency these functions can be readily obtained.

One further simplification in [1l] is very helpful and this simplifica-
tion can be made if there is relatively low damging in the structure.
For this case we can employ the logic of Powell and Hurty—Rubenstein8
and neglect cross product terms thus giving a simpler relation than [1];
this relation is

n(S,) R (52)
An (S, S,0) = w'Z z IYotu)l* Cer (3]

Cor =£[Gf£&,w)?,nfx)fm(s;)do*,da:
The cylinder
1. The infinitely long cylinder

If we consider an infinitely long stiffened, sandwich, or isotropic
cylinder (no longitudinal boundaries) the noise inside of this cylin-
der due to random loading on the elastic cylindrical surface can be
computed readilg by use of the methods developed in several previous
pieces of work. +10,11 ye start with the solution for radial dis-
placement, w, of the cylinder under arbitrary loading

oo =D
w54 )= 2 2. [ rcarn Sl Crvimn]enge

noo M3}

where nyéw is the longitudinal wave length of the structural vi-
bration. For a finite cylinder 1 can be interpreted as the length
and m the number of axial half waves in the vibration pattern. Wwe
can consider that we have a finite cylinder of length 1 from the
structural point cf view and [4] will be the general solution for
the radial displacement if the cylinder has freely supported ends.
However, acoustically it is difficult to consider the end effects,
so we will continue with the concept of the infinite cylinder as
far as the acoustics is concerned.

Following through the solution _in a manner similar to that given in
the above mentioned reference and neglecting product terms in the
manner described in the previous section (Section A), we obtain an
expression for the cross spectral density, 4o , of the radial dis-
placement,



,&}"(x qﬂ,);( 04/”)“;?;/? Mw_lf_;m%nh./#w(%“w)/zx

, [5]
+ Cu,_mzm LAY

where /iuf is the complex frequency response function for lateral dis-
placement, i. e. if the loading has the form

pledt) = @M¢M”:}f§ e fe® [6]

the response will be

wl
W(zqﬂt) Hor @Mw)mff:zﬁtaﬁwge (7]
The terms etc. can be written

s I-ﬂ'
C Woan o ﬂy//// %ag ')7\- w)«d«n”" 'Mm%r""a'@h%@"?;‘{{'/zd-ﬁJy‘- [8]
Cu

LY
o~ Vi, —”;[/7/ ‘gf—-{f‘:”’)‘i /A w)%":‘}fa&wf"%‘fm;nn%aem;;n/;fo/;,,/fa/y,_

Coster i T Tt e amhengen i

The solutlon for the 1nternal pressure field follows directly from
the analysis given several years ago 2 and relation [5] above. We
just have to remark that for an infinite cylinder each structural
mode gives rise to an acoustic mode inside which has a longitudinal
and peripheral pressure distribution the same as the shell radial
displacement. The auto spectral density of the pressure inside the
cylinder at point r,’lx.at frequency w can then be written

P(f(/)cw) -LZM‘MWX-//L/f (rw%l«})/

[9]
[C/\J;“,‘/;“ Coezm.¢
+2 C‘Uum’l/:_,,a“"""%Qﬂ Coa.%d

+ Cuhnum‘nd‘;ﬂ* %Mcp ]
-4-



where A{FQ is the frequency response function for internal pressure,
i. e. if the pressure on the surface has the form

‘ YRR
then the pressure inside will be determined by the elastic vibration of
the wall and the coupling to the air inside and will be given by
—_ Y N L'Wt

79‘-/5(,13,:’#) = /—/ﬂfw)%cw)wngﬂm 7-”"'@ [11]
The frequency response functions /%p; for internal pressure have been
programmed for a computer as described in a previous reference. ’
Consider the average internal pressure over cylindrical contours inside
the cylinder at various distances r from the center. If we integrate [9]
over-the area of any of these contours and divide by the area we will

obtain
[Pln],, = ;f,—.;//'/ﬂ(cmmw)/z/?%a.#(2,,_,4, [12]

More accurate approximation for the acoustics of finite cylinders

Instead of an infinite cylinder which is radiating sound along its en-
tire length consider an infinitely long tube whose walls are rigid every
place except in a segment o0g¢ x < 2 where x is the longitudinal
coordinate. The tube is assumed to radiate energy to the inside through
motion of this segment. The problem is to ohtain the sound at any point

within the tube.

The Green's Function for this case has been given by Morse and Feshbachl3

and Junger:l4 This function is

GOde;r,d,x; ) =% Z[é,omyaﬂ/ 4’,)_7 [13]

Z"CT (#u@fgy’ggggfnx?fr}r)
Aoy [1-C Pty T i)
Cm'ﬂ?fzo e ’fz £ x >z,

Qﬁ-"g’fvl eé ,’-lo 1 F X< X,
O/’of_ 15 the Pt reot of ‘/-‘?-%‘”—7’-‘).—0 J ‘4’,‘-‘11;(’7-“21-)1/ f: “
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III.

Equation [13] expresses the pressure at r,¢ x due to a unit harmonic
source at /o, 4&, x, . This equation combined with the general
relations [1] or [3] and [2] or [5] and [2] ([5] being multiplied by
w? to obtain acceleration) can be used to obtain the sound field in-
side the shell

Computation of the correlation integréls (or joint acceptances)

The computation of the frequency response functions and mode shapes
to be used in [1], [3]., [5]., [9]., [1l2] is a problem in structural
analysis and computer programs are available for accomplishing

these tasks both for cylindrical shells? and built up structures by
use of matrix procedures such as the programs under development at
various aircraft companies (e.g. Program SB028 developed by Martin
Company and now available at Goddard). The central issue is to obtain
an adequate description of the correlation or cross spectrum of the
loading on the outside of the structure due to such sources as boun-
dary layer noise and jet noise. Once this correlation is known then
the correlation integrals (or joint acceptances) denoted by C:nl in
(11, Cr in [3] and Cvg Al , etc. in [5] can be computed;
sometimes, however with considerable difficulty.

Based on examination of the scant evidence available on jet noise15'16
and. the more extensive information on boundary layer noisell 17,18,19, 20
it is believed that an approximation for the cross spectral density of
the loading for jet noise and boundary layer noise can be written in

the form

[Car, g gea) = By &g T ¥ gretesiprislot-! [14]

where 1?9%0 is the auto spectral density of the pressure and OCﬁg)jcf
are empirical constants. Based on the experimental evidence it seems
that for boundary layer noise

e L 2 A w_
ﬂ w
= .¢0 G; , S =o

where &J is the frequency and €7 the convection velocity (about .65V ,
where ( is the flow velocity)

For jet noise it seems that S=o 15 put the remaining parameters
are questionable. Equation [l14] says that the cross spectral density
depends only upon the distance between pgints and not on the exact lo-
cation of the points themselves. Powell has obtained a general re-
sult for such correlation functions for structures whose mode shapes

-6-



IV.

are sinusoidal and for the case where the correlation falls to a
small value in a distance which is small compared to the structural
wave length. For the particular case of boundary_ layer noise within

cylinders (turbulent pipeflow) Rattaya and Junger have computed the
complete correlation integral.

Some approximate relations
A. The infinitely long cylinder

Equation {12] gives the average spectral density of the pressure
over a surface located at distance # from the center of the cylin-
der. Consider the noise transmitted trhough the shell from boun-
dary layer turbulence. Assuming low flow velocities in the sense

of Rattaya and Jungerll and assuming a constant boundary layer thick-
ness on the outside of the shell it can be shown that

[79,;/',’@)_7,4“ ’;73'(“)4—6—2/ Hﬂ- (r oy vy 00 )/ 2 [16]

77_’)11%

g = (2_\_7)" En (-11)(7¢>)
“ mla

where 1£rf“J) is the autospectral density of the outside pressure
V is .65 U (¢ being the flow velocity) €, =7/ ﬁfm:g; €n=2,n>0

L is the length of the shell, and a is the radius of
the shell. Equation [16] can be written in the form:
[Pptrulae & y L
= = = (v w)/ 17
19((«1) P ;.4 y AR NI [17]

This relation has a familiar form if gs remember the simple input-
output relation of a linear black box

Pr)—>t prwy > V()

— - 18]

' 2} TP tw)

where qﬂ{@g) is the power spectral density of the input, Yw)
is the power spectral density of the output and H ) is the
frequency response function. Equation [17] is more complicated
than [18] since it contains many modes, however the right hand side
of [17] can be interpreted as the complete transfer function for
this problem since it gives the power spectral density of the out-

put [79‘ (r W)JAve as a factor of the power spectral density
of the input j;?h))




As can be seen from Reference 9 /A t{ﬁg‘nq,yg w ) involves many
factors; it includes the complete coupling between shell and its
surroundings-so it involves the resonances of the shell, the damping

in the shell, and other complicating factors entering the problem such as

the resonances in the air column inside, and the air damping outside
as effected by speed. The combined shell fluid solution for this in-
finitely long shell is completly described in some previous references.”’
The /4}& functions have been programmed and are available at Goddard.

B. The general case

Equation {1] or [3] and [2] describe the solution of the general case.
Fortunately equation [l1] is now being programmed so that the response and
acceleration cross spectral density can be computed for built up struc-
tures. The basic shape of most of the shrouds containing spacecraft is
conical or a combination of conical and cylincrical sections. Therefore
for purposes of computing the approximate inside field it would not seem
to be in great error to form an equivalent cylinder from the shroud and
use the Green's Function for the cylinder as given by [13]. Equation [3]
would then reduce to [5] with an w?* in front of the = to take care of
acceleration. Equation [13] and [5] can then be substituted into [2] or
[3] and letting , = Pa we will obtain the auto spectral density of
the sound pressure at &~ inside the cylinder. The integrations and com-
putations in volved in the above mentioned relations are quite tedious
but straightforward and can be done on a computer with little anticipated
difficulty.

SUMMARY

Some projected developments have been suggested in this report for com-
puting the sound field inside a structure due to noise exciting the
structure at the boundary. A few of the methods use the idea that the
structure is an approximate cylinder. One of these cylindrical methods
assumes no end effects in the inside acoustics and the result, egquation [9]
with simplifications resulting in [17], leads to a simple relation which has
already been programmed for a computer. Another method (eq. [5]., [13], [2]
is more accurate and does consider the finiteness of the vibrating source
that produces the field inside but this method is much more involved. If
the structure cannot be assumed as a uniform cylinder, but must be consid-

9,12

)

ered as a built up structure containing attached masses in which the coupl-

ing between motion of masses and shell has to be considered then equation
[1] or [3] (which are currently being programmed) coupled with [2] must be
used.
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