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A-BSTRACT 

- This  r e p o r t  d i scusses  t h e  basic equat ions t h a t  can be used i n  computing 
t h e  noise  t ransmi t ted  t o  t h e  in s ide  of  a shel l  or shroud from random 
loading on t h e  outs ide .  The c y l i n d r i c a l  s h e l l  i s  t r e a t e d  i n  s o m e  d e t a i l  
and t h e  general  re la t ions  f o r  an a r b i t r a r y  s t r u c t u r e  a r e  presented.  I 
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l ong i tud ina l  coordinate  
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'2 5 r, xa, 4% on t h e  cy l inder  
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convection velocity of turbulence (.65 U, where U is the 
f l o w  velocity 

empirical constants associated with general relation for 
jet or boundary layer noise 

assrsciated with jet or boundary layer noise 

auto spectral density of jet or boundary layer noise 

d,P,<J 

r X  5' 8 q'&)general relation for cross spectral density of pressure 
J d d J  
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I. Introduction 

Space vehicles are contained within shrouds which are- subjected to the 
outside dyanmic environment during launching and flight. There are two 
main paths by which the space vehicle can receive the loads. One is 
the air path through the  skin of the shroud and the other is the struc- 
tural path through the attachments of the space vehicle to the shroud 
and booster. The emphasis in this report will be on noise transmitted 
through the air inside from random vibration of the casing. To this 
author's knowled e the first studies of problems of this type were 
given by Dyer. 
tion of Dyer's work. 

11. General equations 

~ - -  

This present study is an extension and generaliza- 

A. An arbitrary structure 

For a built up elastic structure subjected to random loading the 
cross spectral density between the normal acceleration at any two 
points of the structure can be obtained by an extension of Powell's 
theory3 given by the present author. 4 t 5  This cross spectral den- 

is 

where 

G C ~ G U )  is the cross spectral density of the exciting pressure 
between points S,and S at frequency GO 2 
is the normal component of the rth mode evaluated at 
point S ,  of the surface 

is the normal component of the kth mode evaluated at 
point S of the surface 

FrbL 6 1  

f" 
2 

/Y,&J)/ = / V ] , . / ( C J ~ - ~ ~ ~ ) ~ +  the frequency response function 

er = &-'ew - the phase angle pc+hJ L 
is the natural frequency of the rth mode 

dv 
6 

= element of volume of the body 
damping force per unit volume per unit velocity 
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- M, = fflp('$ md',)dv , the generalized mass 
" mass density of structural material 4 

where q is the total displacement in some desired direction,g, 
is the modal displacement in that direction and 4 is the gen- 
eralized coordinate for the rth mode 

The noise transmitted inside a structure from induced vibrations of t e 
surface can be obtained by employing an extension of Parrent's Theory 
given by the present author in report referred to above.5 
port the cross spectral density of the field pressure in the medium out- 
side- a vibrating surface was obtained. By analogous reasoning the sta- 
tistics of the pressure inside a randomly vibrating surface can be 
written in terms of pressure cross spectral density, 6 ( e , p a J d )  
follows: 

t: 
In that re- 

as 

where G f e, Pb, d) 
inside the structure at points P and P at frequencyw 

is the cross spectral density of the pressure 

1 2 

#%(S,,<,d) is the cross spectral density of the normal acceleration at 
the surface 

is the Green's Function for the medium inside of the struc- 
ture whose normal derivative vanishes over the surface of 
the structure 
(It is the response at inside point /? 
load of frequencyw at surface point S ) 

d) g (6 s,, 
due to unit sinusoidal 

1' 
T(~,S,,W) is the complex conjugate of $(e,q, w >  referred to coordi- 
V cates i , n _  the xr,*;?., *& space 

0- denotes the vibrating surface 

Equations (11 and (23 constitute the set of equations to determine the 
noise inside a structure which is exposed to random pressure of known 
cross spectral density, 
The cross spectral density of the normal acceleration, a, (S,,Sa, w )  in 
[l] is a function of the mode shapes, fr,.., the frequency response func- 
tion , Yr, and other computable parameters which can be obtained from 
the characteristics of the structure and the loading. The pressure trans- 
mitted to the inside is given by [2] and is dependent on the normal sur- 
face acceleration [l] and the inside Green's Function which theoretically 

G (s,, SL, k l )  on the surface of the structure. 
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. 
can be computed from acous t i c  theory. Of course t h e r e  a r e  some p r a c t i -  

t h a t  t h e r e  are p r a c t i c a l  d i f f i c u l t i e s  i n  obta in ing  mode shapes and fre-  
quencies t o  use i n  [l]; however for  r e l a t i v e l y  simple shapes and s p e c i a l  
ca ses  such a s  low frequency these func t ions  can be r e a d i l y  obtained.  

One f u r t h e r  s i m p l i f i c a t i o n  i n  [l] i s  very h e l p f u l  and t h i s  s impl i f i ca -  
t i o n  can be made i f  t h e r e  i s  r e l a t i v e l y  low d a m  ing  i n  the  s t r u c t u r e  

and neg lec t  c r o s s  product  t e r m s  thus  g iv ing  a simpler r e l a t i o n  than 
t h i s  r e l a t i o n  is 

- -  cal  d i f f i c u l t i e s  i n  obta in ing  these Green ' s  Functions i n  t h e  same way 

For t h i s  case  we  can employ the  log ic  of  Powell 7 and Hurty-Rubenstein 6 
[l]; 

B. The cy l inde r  

1. The i n f i n i t e l y  long cy l inder  

I f  we consider  an i n f i n i t e l y  long s t i f f e n e d ,  sandwich, or i s o t r o p i c  
cy l inde r  (no long i tud ina l  boundaries) the no i se  i n s i d e  of t h i s  cy l in-  
der due t o  random loading on the  e l a s t i c  c y l i n d r i c a l  su r f ace  can be 
computed r e a d i l  by use of t h e  methods developed i n  seve ra l  previous 
p i e c e s  of work.6i10,11 W e  s t a r t  with t h e  s o l u t i o n  fo r  r a d i a l  d i s -  
placement, w, of t h e  cy l inder  under a r b i t r a r y  loading 

004 

[41 

where 24/- i s  t h e  longi tudina l  wave length  of t h e  s t r u c t u r a l  v i -  
b r a t i o n .  For a f i n i t e  cyl inder  1 can be i n t e r p r e t e d  a s  t h e  length  
and m t h e  number of a x i a l  ha l f  waves i n  t h e  v i b r a t i o n  p a t t e r n .  W e  
can consider  t h a t  w e  have a f i n i t e  cy l inde r  of length 1 from t h e  
s t r u c t u r a l  p o i n t  of v i e w  and [4] w i l l  be t h e  general  s o l u t i o n  fo r  
t h e  r a d i a l  displacement i f  the  cy l inde r  has  f r e e l y  supported ends. 
However, a c o u s t i c a l l y  i t  i s  d i f f i c u l t  t o  consider  t h e  end e f f e c t s ,  
so w e  w i l l  cont inue with the concept o f  t h e  i n f i n i t e  cy l inde r  a s  
f a r  a s  t h e  a c o u s t i c s  i s  concerned. 

Following through t h e  s o l u t i o  i n  a manner s i m i l a r  t o  t h a t  given i n  
t h e  above mentioned reference" and neglec t ing  product t e r m s  i n  t h e  
manner described i n  t h e  previous s e c t i o n  (Sect ion A ) ,  we ob ta in  an 
expression f o r  t h e  cross s p e c t r a l  d e n s i t y ,  a , of the  r a d i a l  dis-  
placement , 

- 3 -  



where & i s  the  complex frequency response funct ion f o r  l a t e r a l  d i s -  
placement, i. e. i f  t h e  loading has  t h e  form 

t 

t h e  a n a l y s i s  given several p a r s  ago 
j u s t  have t o  remark t h a t  f o r  an i n f i n i t e  cy l inde r  each s t r u c i i i r a l  
m o d e  g ives  rise t o  an acous t ic  mode 
and pe r iphe ra l  p re s su re  d i s t r i b u t i o n  t h e  same a s  t h e  s h e l l  r a d i a l  
displacement. The au to  s p e c t r a l  dens i ty  o f  t h e  pressure  i n s i d e  t h e  
c y l i n d e r  a t  p o i n t  r , q , x  a t  frequency& can then be w r i t t e n  

i n s i d e  which has  a l ong i tud ina l  

-4- 



where is  t h e  frequency response funct ion f o r  i n t e r n a l  p re s su re ,  
i. e. i f  t h e  pressure  on t h e  surface has  t h e  form 

then t h e  pressure  i n s i d e  w i l l  be determined by t h e  e l a s t i c  v i b r a t i o n  of 
t h e  wa l l  and t h e  coupling t o  t h e  a i r  i n s i d e  and w i l l  be given by 

The frequency response func t ions  f o r  i n t e r n a l  p re s su re  have been 

Consider t h e  average i n t e r n a l  pressure  over c y l i n d r i c a l  contours  i n s i d e  
t h e  cy l inde r  a t  var ious  d i s t a n c e s  r from t h e  cen te r .  I f  we  i n t e g r a t e  [ 9 ]  
overth-e  a rea  of any of t hese  contours and d iv ide  by t h e  a rea  we w i l l  
ob t a in  

programmed f o r  a computer a s  descr ibed i n  a previous re ference .  7 

2.  More accu ra t e  approximation f o r  the  acous t i c s  of  f i n i t e  cy l inde r s  

Ins tead  of an i n f i n i t e  cy l inde r  which is  r a d i a t i n g  sound along i t s  en- 
t i r e  length  consider  an i n f i n i t e l y  long tube  whose w a l l s  are r i g i d  every 
p l ace  except i n  a segment 
coordi-nate. The tube i s  assumed t o  r a d i a t e  energy t o  t h e  i n s i d e  through 
motion- of t h i s  segment. The problem is t o  ob ta in  t h e  sound a t  any p o i n t  
w i th in  t h e  tube .  

0 s  y = A  where x i s  t h e  long i tud ina l  

13 
The Green ' s  Function f o r  t h i s  case has  been given by Morse and Feshbach 
and Junger. l4 This func t ion  i s  

- 5- 



L .  

111. 

Equation [13] expresses the pressure at r,P,x due to a unit harmonic 
source at re, Spa, zb 
relations [l] or [3] and [ 2 ]  or [5] and [2] ([5] being multiplied by 
W +  to obtain acceleration) can be used to obtain the sound field in- 
side the shell 

Computation of the correlation integrals (or joint acceptances) 

. This equation combined with the general 

The computation of the frequency response functions and mode shapes 
to be used in [ 13 , [3] , [ 51 , [9], [12] is a problem in structural 
analysis and computer programs are available for accomplishing 
these tasks both for cylindrical shells9 and built up structures by 
use of matrix procedures such as the programs under development at 
various aircraft companies (e.g. Program SB028 developed by Martin 
Company and now available at Goddard). The central issue is to obtain 
an adequate description of the correlation or cross spectrum of the 
loading on the outside of the structure due to such sources as boun- 
dary layer noise and jet noise. once this correlation is known then 
the correlation integrals (or joint acceptances) denoted by C,A in 
[11, crr in [31 and cS,..J-, , etc. in [5] can be computed; 
sometimes, however with considerable difficulty. 
Based on examination of the scant evidence available on jet noise 15/16 
and.the more extensive information on boundary layer noise 11,17,18,19,20 
it is believed that an approximation for the cross spectral density of 
the loading for jet noise and boundary layer noise can be written in 
the form 

where (r 
are empirical constants. Based on the experimental evidence it seems 
that for boundary layer noise 

fw) is the auto spectral density of the pressure and d,& F 
11 

4% 

where kl is the 
where is the 

For jet noise it 
are questionable. 

, / I  &L P 
w *bo - 
i7 J S = 0  

c 151 

frequency and 7 the convection velocity (about .65 U , 
flow velocity) 

seems that & = O  l5 but the remaining parameters 
Equation [14] says that the cross spectral density 

depends only upon the distance between points and not on the exact lo- 
cation of the points themselves. 
sult for such correlation functions for structures whose mode shapes 

Powel121 has obtained a general re- 
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are s inuso ida l  and f o r  t h e  case where t h e  c o r r e l a t i o n  f a l l s  t o  a 
small value i n  a d i s t ance  which i s  small  compared t o  t h e  s t r u c t u r a l  

cy l inde r s  ( tu rbu len t  pipeflow) Rattaya and Junger” have computed the  
complete c o r r e l a t i o n  i n t e g r a l .  

. r  wave length.  For t h e  p a r t i c u l a r  case  of  boundary l a y e r  no ise  wi th in  

IV. Some approximate r e l a t i o n s  

A. The i n f i n i t e l y  long cy l inder  

Equation [12] gives  the  average s p e c t r a l  dens i ty  of t h e  pressure  
over a su r face  loca ted  a t  d i s t ance  r from t h e  c e n t e r  of t h e  cy l in-  
der. Consider t he  noise  t ransmi t ted  trhough t h e  s h e l l  from boun- 
dary l aye r  turbulence.  Assuming low flow v e l o c i t i e s  i n  t h e  sense 
of Rattaya and Junger’l and assuming a cons tan t  boundary l a y e r  thick-  
ness  on t h e  ou t s ide  of  t h e  s h e l l  it can be shown t h a t  

where $lm, is t h e  au tospec t r a l  dens i ty  of t h e  ou t s ide  pressure  
( 0 being the f l o w  v e l o c i t y )  e*=/ xy-=o; €*=z,%>o i s  .65 U 

L i s  t h e  length of  t h e  s h e l l ,  and a i s  t h e  r ad ius  of 
t h e  s h e l l .  Equation [16] can be w r i t t e n  i n  t h e  form: 

This  r e l a t i o n  has  a f ami l i a r  form i f  w r e m e m b e r  t h e  simple input- 
ou tput  r e l a t i o n  of a l i n e a r  black box 22 

where 
i s  the  power s p e c t r a l  dens i ty  of t h e  output  and b f f c 3 )  i s  the  
frequency response function. Equation [17] is m o r e  complicated 
than [18] s ince  it contains  many modes, however t h e  r i g h t  hand side 
of [17] can be i n t e r p r e t e d  a s  t h e  complete t r a n s f e r  funct ion f o r  
t h i s  problem s ince  it gives  t h e  power s p e c t r a l  dens i ty  of t he  out- 
put a s  a f a c t o r  of t he  power s p e c t r a l  dens i ty  

4(w) i s  t h e  power s p e c t r a l  dens i ty  of t h e  inpu t ,  WlU) 

[ p i  (Y ;  W 1 ~ A Y C  
of t h e  input  jau’ 
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As can be seen from Reference 9 
factors; it includes the complete coupling between shell and its 
surroundings- so it involves the resonances of the shell, the damping 
in the shell, and other complicating factors entering the problem such as 
the resonances in the air column inside, and the air damping outside 
as effected by speed. The combined shell fluid solution for this in- 

The H4; functions have been programmed and are available at Goddard. 

k/4; fr, 'H", +L, k l )  involves many 

finitely long shell is completly described in some previous references. 9/12 

The general case 

Equation [l] or [3] and [2] describe the solution of the general case. 
Fortunately equation [l] is now being programmed so that the response and 
acceleration cross spectral density can be computed for built up struc- 
tures. The basic shape of most of the shrouds containing spacecraft is 
conical or a combination of conical and cylincrical sections. Therefore 
for purposes of computing the approximate inside field it would not seem 
to be in great error to form an equivalent cylinder from the shroud and 
use the Green's Function for the cylinder as given by [13]. Equation [3] 
would then reduce to [5] with an W +  in front of the to take care of 
acceleration. Equation [13] and [5] can then be substituted into [2] or 
[3] and letting 4 = Pr  we will obtain the auto spectral density of 
the sound pressure at inside the cylinder. The integrations and com- 
putations in volved in the above mentioned relations are quite tedious 
but straightforward and can be done on a computer with little anticipated 
difficulty . 

Some projected developments have been suggested in this report f o r  com- 
puting the sound field inside a structure due to noise exciting the 
structure at the boundary. A few of the methods use the idea that the 
structure is 22 approximate cylinder. One of these cylindrical methods 
assumes no end effects in the inside acoustics and t he  resclt,  equation [9] 
with simplifications resulting in [17], leads .to a simple relation which has 
already been programmed for a computer. Another method (eq. [ 51, [13], [ 21 ) 
is more accurate and does consider the finiteness of the vibrating source 
that produces the field inside but this method is much more involved. If 
the structure cannot be assumed as a uniform cylinder, but must be consid- 
ered as a built up structure containing attached masses in which the coupl- 
ing between motion of masses and shell has to be considered then equation 
[l] or [3] (which are currently being programmed) coupled with [2] must be 
used. 
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