
a d 

F 
€ 

cr: 
U 

E G 
UNDER RAXDO AD1NG 

https://ntrs.nasa.gov/search.jsp?R=19650001025 2020-03-17T00:26:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85256098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C P 

MODELLING OF SPACECRAFT UNDER RANDOM LOADING 

By Joshua E, Greenspon 

Distribution of this report  is provided in the interest  of 
information exchange. Responsibility for the contents 
r e s ides  in the author or organization that prepared it. 

Prepared  under Contract No, NAS 5-3132 by 
J G ENGINEERING RESEARCH ASSOCIATES 

Baltimore, Maryland 

f o r  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sa le  by the Off ice of  Technical  Services, Department of Commerce, 
Washington, D.C. 20230 -- Pr ice  $1.00 



ABSTRACT 

This report  gives modelling laws for space 
vehicles under random loading where the model 
is constructed of a different material than the 
full scale vehicle. 
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c 1 

GENERAL 

All pr imed quantities refer  to the prototype, a l l  unprimed quantities 

refer to the model. All  scale factors  a r e  denoted by u ; e.g. 

is the rat io  of the specific heat at constant p re s s  of the fluid pro-  
*CP f 

totype mater ia l  to the fluid model material. All  s subscripts refer  to 

solid; all f subscripts refer  to fluid. 
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MODELLING O F  SPACECRAFT UNDER RANDOM LOADING 

Joshua E. Greenspon, Dr. Eng. 
J G ENGINEERING RESEARCH ASSOCIATES 

3831 Menlo Drive 
Baltimore, Maryland 2 12 1 5 

I. INTRODUCTION 

As spacecraft  become la rger  -and more complicated, it becomes 

more  difficult and expensive to tes t  the full scale structures.  In addi- 

tion, i f  specifications for  a spacecraft a r e  to be obtained before the 

vehicle and payload a r e  constructed, the only way that predicted r e -  

sponse can be obtained is for  scale model tes t s  to be conducted and 

calculations performed on the proposed design. I f  small models could 

be constructed of mater ia ls  which were  easier to handle in manufactur - 
ing and l e s s  expensive than the full scale, a great deal of information 

could be obtained efficiently on a proposed space vehicle. 

of this report  is to present  a derivation of the modelling laws for  

random dynamic loading on an elastic structure such a s  a spacecraft-  

booster combination which is constructed of a different mater ia l  than 

the prototype. 

The purpose 
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11. Approximate Formulation of the Modelling Laws 

A.. Forces  and Motions 

The theory presented here  is an application and extension of the 

basic theory of modelling presented by Weber (Ref. 1). 

associated with the full scale be pr imed and those associated with the 

model unprimed. 

scale,  t '  the full scale t ime,  and k' the force in the full scale ,  

Let the quantities 

Thus i f  8' is the characterist ic length in the full 

where A i s  the linear dimension scale factor ,  7 is the t ime scale factor,  

and x is the force scale factor. 

The phenomenon that is to be scaled is random loading and response 

of an elastic structure.  

the model is  geometrically similar to the prototype and is subjected to 

a geometrically similar load distribution. 

The only assumption that will be made is that 

The basic equations governing the elastic motions of the s t ructure  

in the absence of body fo rces  a r e  the three dimensional equations of 

elasticity (Ref. 2). 
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w h e r e x  and F are the Lame constants, A is the cubical dilatation, and p, 

is the mass density of the solid material .  The displacements a r e  u, v, w. 

The cubical dilatation and the Laplacian a r e  

aU av a w  
ax ay aZ 

A = - + - + -  

The Lame constants h and jY can be writ ten in t e r m s  of the modulus 

of e las t ic i tyE and Poisson 's  ratio v as follows: 

E V  - E - 
A =  9 p=- ( l t v )  ( 1 - 2 V )  2 ( l + V )  

So the x component of the equations of motion becomes 

and there  a r e  two other equations for the y and z components. 

scaling laws can be derived by mere ly  working with one of these equa- 

tions. In accordance with our notation, equation (5) is for the model 

since it contains unprimed quantities. 

The 

The equivalent equation for  the 

. I  
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prototype, assuming a different mater ia l  with approximately the same 

Poisson's ratio but different E and p," is 

Le 

aZui a 2 U )  t -  E' (- 
2 ( l t v )  a x f 2  

the scale factors for E and pebe 

By the choice of model mater ia l  and linear scale this will f i x u E ,  D 

and A. 

basic quantities. 

follows : 

ps ' 
The r e s t  of the scale factors will then be derived f rom these 

Thus the time scale factor 7 will be determined a s  

*Usually the Poisson ratio is of secondary importance. Moreover, the Poisson ratio for the model 
probably will  not vary greatly from the full scale material. 
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Thus, 

and 

(frequency is therefore  modelled as 1/r = ( l / A ) , / x  ). 
E ps 

Equation (6) f o r  the prototype can then be written 

DEE 1 a% +-+-+- a% aZu 1 (%+- a 2 V  +-j aZw 

2 ( 1 + v )  [z a y 2  a z 2  i - 2 v  a x 2  ax ay ax aZ 

Then all scaling t e r m s  a r e  collected into a single coefficient on the 

left. In order  for the model to obey the same dynamic equations a s  the 

prototype, the scaling relation must  be a s  follows: 

uE/A = D X/r2 
ps 

which reduces to 

E'/E t 1 2 /  t2 --=1 
P,/P, .et2/.e2 

o r  
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o r  finally f't1/f- = f&/* where f is the frequency. 

The physical number f 4 / G s  is a type of Strauhal number. If the 

same mater ia l  were  used in the model and prototype, then Junger 's  

relations (Ref. 3) would hold; i.e., 

F o r  Junger 's  case,  frequency is scaled inversely to length. Equations (8)  

and (10)  a r e  the basic relations for modelling with different mater ia ls .  

Variations of this scaling law a r e  contained inReferences (4-7). The other 

quantities involved in the problem canbe  derived f rom these relations. 

Thus 

P res su re :  p'/p = X / A 2  P f  = DEP 

(for the same mater ia l ,  the velocities scale  directly).  

The statist ical  quantities will then be scaled a s  follows: 

< p12> 
Mean square p re s su re :  - - CP2 > -0'E 
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Correlation full scale 
Correlation model Correlation function: 

(b) Displacement: <w;w;>/<wlw2> = A2 

(d) Acceleration: <a;a;>/<a,a2> = - 

Power spectral  density: i.e. , 

(P.S.)' - Power spectral  density full scale 
(P. s. ) - -  

Power spectral  density model 

(b) Displacement: A 2 r  = A2A F = 
OE OE 

(c)  Velocity: - aE r = - uE AE 
U 0- 
P, P, 

(d) Acceleration: I (;I r = ($1 AE =tF h2 OPS 
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1. Joint or  Interface Damping 

One of the big problems in using scale models is damping. Here 

we will analyze how Coulomb damping and mater ia l  damping enter into 

the problem. Coulomb damping will a r i s e  as external damping through 

rubbing between attached pieces. 

ing states that the frictional shearing s t r e s s  is proportional to the normal 

s t r e s s ;  i.e., 

The basic relation for Coulomb damp- 

\ 
- 

( S . S . )  = (N.S.)  

- 
where i s  the coefficient of sliding friction between the two surfaces.  

F o r  the prototype this relation will be 

( S . S .  ) '  = E' (N.S. ) '  (15) 

The previous scaling laws derived in section A stated that the s t r e s s  

must  scale by a factor uE; thus 

Thus the frictional shearing s t r e s s  in the model must  be adjusted to 

1/uE of the frictional shearing s t r e s s  in the prototype. This can be 

done by adjusting the coefficient of friction and the normal  bearing s t r e s s  

in the model so  that ( 1  6) is satisfied. 

bolt fittings a t  the joints so that the normal p re s su re  could be adjusted. 

The model could be constructed with 

8 



2. Material  and Air Damping 

For mater ia l  damping the problem is not as direct ,  and we must  

r e s o r t  to some assumptions regarding the response of a s t ructure  to 

random loading. Take the case in which the mater ia l  and a i r  damping 

can be completely described by a viscous damping coefficient. 

power spectral  density of the displacement of a s t ructure  under random 

loading can, for practical  purposes, be written a s  (Ref. 8) 

The 

where{ is associated with the mode shape of the s t ructure ,  C,, i s  the 

correlation integral which for all  practical purposes can be considered 

independent of mater ia l  damping, and Y i s  the response function which 

i s  cri t ically dependent on damping. (To make this paper self -contained, 

the origin of equation (17) i s  explained in the appendix.) 

function Y can be written 

The response 

where M, is the generalized m a s s  for  the rth mode and P, is the damping 

coefficient for  this mode. The logarithmic decrement 6,  can be written 

9 



Fung et  a1 (Ref. 9 )  found that p r  was approximately a constant for var i -  

ous modes of aluminum cylindrical shells. 

w = w ,  

Thus at resonance, where 

O r  

In a structure subjected to random loading, the most severe r e -  

sponse in the spectrum will occur a t  the frequencies corresponding to 

resonances of the modes. Therefore,  a t  these frequencies 

1 (P.S.), - - = 62 
B2 

So, f o r  a model of different mater ia l  than the full scale,  

Thus, in order  to scale mater ia l  damping properly a t  the cr i t ical  

f r equencie s , 

10 



e 1 

The ratio c'/c must  be determined experimentally for the different 

mater ia l s .  However, a relatively straightforward experiment might be 

used to do this; possibly an  experiment such a s  the one performed by 

Fung et  al. (Ref. 9) could be performed on cylindrical shell  models made 

of the prototype and model mater ia ls .  

A more  basic assessment  of mater ia l  damping and its dependency 

on level of excitation is offered by Crandall (Ref. 10). However more  

recent  experiments have been conducted by Granick (Ref. 11) ( in  an 

extension of Crandall 's study) at  Goddard Space Flight Center which 

should throw a great  deal of additional light on the mater ia l  and air 

damping problem. 

111. More General Formulation 

In the previous section the modelling laws for the s t ructure  were  

formulated in an  approximate fashion considering mater ia l  and a i r  damping 

a s  lumped parameters  in an effort  to derive some pract ical  modelling 

relationships. 

that  ma te r i a l  damping a r i se s  out of a thermal relaxation phenomenon first 

Consider now a more  exact formulation by assuming 

11 



discussed by Zener (Ref. 

(Ref. 14) and others and considered m o r e  recently by Lazan and Goodman 

(Ref. 15), Crandall (Ref. lo ) ,  and Granick (Ref.  11). Fur thermore ,  con- 

sider that the vibrating s t ructure  is  moving in a viscous heat conducting 

fluid so that fluid damping may a r i s e  out of radiation and viscous losses .  

12) la te r  generalized by Mason(Ref. 13) Biot 

The equations governing the behavior of the solid a r e  

-Az T h e  equation of motion of the solid (Ref. 16) (x component with 

body forces) 

aZu a2u a2u 1 a aU t-t-) a v  a w  

ax2 a y 2  a z 2  1-2v a,Q ay  a Z  - t - + - t - -  

X = b o d y  f o r c e  p e r  u n i t  volume 

B. The heat conduction equation of the solid (Ref. 14) (whichassumes 

material  damping by the mechanism of thermal  relaxation) 

(25) K s  (2 t3 t$)=Cs Ft aT To -- UE a aU t-t-) av aw 
1 - 2 Y a t ( x  ay aZ 

C. The equations governing behavior of the fluid a r e  

1. The equation of continuity (Ref. 17)  

12 



2. The Navier Stokes equations of motion (Ref. 17) (x  component 

with body forces)  

a; 2 a; a; a+ 
= p f F x - - + -  a [  2 p - - - p  ax 3 ( ax ax 

a; . a6 . a; 

Fx = b o d y  f o r c e  p e r  u n i t  mass 

3. The equation of heat t ransfer  in the fluid (Ref. 17, 18) 

(28) 

The main boundary conditions between fluid and solid to consider 

for modelling a r e  

a t  f l u i d -  s o l i d  i n t e r f a c e  
( T ) f l u i d  = (T)solid 

a t  f l u i d -  s o l i d  i n t e r  f a c e  

(Disp lacement ) f  = (Displacement)solid a t  f l u i d - s o l i d  i n t e r f a c e  

(Normal v e l o c i t y ) f l U i d  = (Normal ve loc i ty ) so l id  a t  f l u i d -  s o l i d  i n t e r  f a c e  

- 
(Stress)fluid - (StreSS)solid a t  f l u i d - s o l i d  i n t e r f a c e  

13 



If modelling solids and fluids a r e  chosen which a r e  different f rom the 

prototype then the following scaling parameters  must  hold: 

For  the solid 

E'/E = crE, p : /ps  =5P , K:/Ks ~5~ , a' /a  =u2, C:/Cs = X ' / X = ~ ~  ( 2 9 )  
S S 5cs 

F o r  the fluid 

p ; /p ,  =CTpf,  p ' / p  =5$ cp I/Cp = D c  1 q/k, = C J k f 9  P;/Pf =apf' F./Fx =5  
f f P f  F x  

( 3 0 )  

These relations a r e  the fundamental parameters  once the model mater ia l  

and model fluid a r e  chosen. 

Equation (24)  and ( 2 5 )  can then be written for  the solid model a s  

( see  Eq. (9 )  and again assume same v in  model and prototype) 

Thus the following relations must  hold among the scaling factors in  

order  that the basic differential equations will be the same fo r  model 

and prototype 

14 



The relation cE/h  = up, h/r2 leads to equation (10). The additional 

relation oE/h = oE 52 B/h leads to 

1 e = -  
ull 

This says that the temperature  of the model will be scaled by l /ua.  

F r o m  (34 )  we have the relations 

( 3 5 )  

It is plainly seen that i f  the same mater ia ls  a r e  used in model and 

prototype and testing is done in the same fluids, the first of the equations 

in  (36)  is  inconsistent with the elastic scaling law ( 3 3 ) .  In fact the only 

way that thermoelastic damping can be scaled is by choosing the length 

scale  and the mater ia l  for the model in such a manner that the coef- 

ficient of expansion, heat t ransfer  coefficient and specific heat of the 

model and prototype obey equation (36) .  This does not s eem to offer  

much hope. 

r ialdamping scaling seems to be by u s e  of a relation s imi la r  to ( 2 3 ) .  

In cases  of built up s t ruc tures  containing many connections, the joint 

o r  interface damping will undoubtedly over shadow the mater ia l  damping 

so that this inconsistency will play a minor role. 

Thus the only hope for  obtaining sensible resu l t s  for mate-  

. *  
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. 

Now consider the fluid. If the equations of the model fluid a r e  

written in  a similar manner a s  those for the solid, we obtain 

( 3 7 )  -- % P f  Pf t u  - ~a [= (Pf ; )  + , ( P f G )  a +z a ( P f i ) ] = O  7 a t  p f  A~ 

cr 
P f  aP 

f fP f  (3) ( L e f t  Side) = crp UFx Pf Fx -h ax 

The basic scaling relations that mus t  hold a r e  therefore 

r 7 h2 r2 

The relation cr A / r 2  = f f P / A 7  leads to the constant Reynold's number 

s c aling 
Pf 

A 
" r  

(noting that 5- = - ) 

16 



This relation inherently contains the viscous damping offered by the 

fluid to the solid. Noting the fluid-solid boundary conditions and intro- 

ducing (33) 

If the same fluids and solids a r e  used for the model and prototype, 

this will lead again to an inconsistency in (43) i f  A f 1. The only way 

that we can scale fluid viscous damping is to choose a length scale and 

model mater ia l s  which obey (43). The second scaling relation f rom (40) 

i s  

where p denotes p re s su re  and P denotes force.  

This is Newton's Universal Similitude Law (Ref. 1) which musthold be- 

tween the model and full scale  fluids. It inherently contains the scaling 

relations for m a s s  loading and radiation damping offered by the fluid 

to the solid. 

Now going back to the boundary condition between solid and fluid, 

it is seen that s t r e s ses  and p res su res  must be scaled by wE. Thus 

17 



(45) 
r 2  h 

and noting that h2/72 = crE/up f r o m  elastic scaling, we obtain finally 
S 

w = f f  
P f  ps  

This says that the scale factors for the density of the fluids and 

solids for model and prototype must  be the same in  order  for m a s s  

loading and radiation damping to scale properly. If the same density 

fluids a r e  used for the model testing then the same density solids must  

be used. 

The fluid heat t ransfer  equation gives scaling parameters  which 

must  satisfy 

The same inconsistency between these relations and the elastic 

scaling relation is obtained when the same mater ia ls  a r e  used for  model 

and full  scale. In cases  where heating of the fluid is not a pr imary  prob- 

l em,  the heat transfer character is t ics  of the fluid can be neglected com- 

pletely and it is only necessary to consider the fluid-solid problem 

without Eq. (28). 

18 



IV. DISCUSSION 

The use  of very smal l  scale models of different mater ia l  than the 

prototype offers  a very efficient and inexpensive way to obtain o rde r  

of magnitude answers  which would ordinarily be very difficult o r  im-  

possible to obtain. 

use  much lower p re s su re  excitation levels than the full scale. 

This type of scaling also offers an opportunity to 

There 

might a lso be a possibility of using light weight, easy to construct,  

plastic models to perform initial tes ts ,  in the same manner a s  those 

performed by Sankey and Wright (Ref. 19) but with a more  complete 

a s ses smen t  of damping. 

Invariably, damping offers a big problem i n  using scale model r e -  

sults to extrapolate full scale response. If we limit our  discussion to 

the resonance response,  then damping could be introduced approximately 

in  the scaling a s  shown in the previous section i f  5 were constant for a 

given mater ia l .  

ing, since the major response a t  each frequency of interest  is usually 

composed of primatily resonant contributions in modes which a r e  close 

to this frequency. 

This resonant limitation is not ser ious in random load- 

As shown in the third section of the repor t  mater ia l  damping of the 

thermoelastic type cannot easily be scaled nor can viscous a i r  damping 

ar is ing f rom a i r  viscosity unless tes ts  are  conducted in  "thinner" a i r  

o r  in different fluids. 

tu res  under random loading is that joint o r  interfacial  slip will be the 

main source of damping both in the model and in the full scale whether 

they be of the same o r  different materials.  

The main hope with model testing built-up s t ruc-  

If this were t rue and if 

19 



frictional s t r e s ses  were scaled properly according to (16), then re la -  

tions (13) and (13a) will hold for the random response. If one uses  

model materials with high mater ia l  damping such a s  plastics,  he must  

be sure that the joint damping is modelled properly before resorting 

to approximate equations of the form of (23).  Equations (23)  mus t  be 

used with extreme caution since they will hold a t  resonant frequencies 

and they will hold only i f  6 can be shown to be a function of mater ia l  only. 

APPENDIX A 

The general variational equation of motion for any elastic s t ructure  

in the absence of body forces  can be writ ten a s  (Ref. 8) 

[p(USu t VSv t WSw) t GwIdv 151 V 

where 

mass  density of body 

displacements at any point . 
variations of displacements 

surface forces  

elemental surface a rea  

elemental volume 

variation of s t ra in  energy function. 

20 



b 

f n  accordance with Love’s analysis let  the displacements in the 

normal  modes be described by 

where y, = A, cos 

Now let  the forced motion of the system be described by 

p, t ,  p, being the natural frequency of the r t h  mode. 

where u , ,  v , , w , ,  are the mode shapes and yr  is a function of time. In 

accordance with Love let 

Substituting into the variational equation of motion, we obtain 

However, since the modal functions satisfy the equation for f r ee  

vibration 

2 1  



and the orthogonality of the normal modes implies that 

So the final equation of motion becomes 

where 

+ v: + w:)dV (the generalized m a s s  for the r t h  mode) 

V 

and 

F r ( t )  =L [[[xv(t)ur t yv ( t )vr  t zv(t)wrldS (A9) 
s 

Mr 

(the generalized force for the r t h  mode) 

If s t ructural  damping is taken into account, it can be written a s  

another generalized force which opposes the motion 

22 



S 

where K is the damping force  per unit volume per  unit velocity. Finally, 

the equation of motion becomes 

It will be convenient to employ the vector notation; thus, let the dis-  

placement functions in the rth  mode be written as 

+ + +  
where i , j , k are the unit vectors in the x, y, z directions, respectively. 

Let 

Thus, 

where D means surface. 

2 3  



Now the Fourier  t ransform of 3 (a, t )  is 

F’ (c, t) e-iot d t  1 s- (a, w) = - 
fi F 

and the Fourier  t ransform of cp, can be written 

yr ( t )  e-iot d t  
1 s (w) = - 

‘Pr 

S. (w) = i w S  (w) 
‘Pr ‘Pr 

sa. (w) = - a2 s ( w )  
‘Pr ‘Pr 

and 

+a 

cp, ( t )  e- iwtdt  

Thus the t ransform of the equation of motion becomes 

2 4  



Thus 

Now, wri te  the auto correlation function of the displacement in vector 

notation as follows: 

A--(V, 7) = lim - 1 [:' ; ( t ,V)  - ; ( t t r , V ) d t  
T - W  2T q q  

where < denotes the complete displacement vector 

Now 

o r  

25 



so 

r t a  

Now the power spectral  density of the displacement:: P;; is defined in 

te rms  of the autocorrelation function as 

P - - ( u , V ) e i W T  du  1 A - - ( 7 , V )  =-  
q q  

Thus, 

or 

But 

*The notation (P. S. )d i s  used for power spectral density in the main body of the report. 
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a 

so 

Therefore 

where 

Let Crk(w) represent  the double surface integral in (A31).  C r k ( w > ,  

when writ ten out, gives 

27 



c I 

The te rms  in the brackets become 

r s , s , * ~ ~ ~ ~  A I. s ~ s ~ * ~ ~ ~ ~  s ~ s , * ~ ~ ~ ~  

t S y S X * V r U k  t S Y S y * V r V k  t S Y S Z * V r W k  

S Z S X * W r U k  t s z s y * w r v k  t 

For the special case of only vertical  forces  in 2 direction, a l l  

t e rms  disappear except the las t  ( S, S,* w r w k  ). This las t  equation gives 

the coupling between the forces  when there  a r e  exciting forces  in more  

than one direction. It is seen that the general solution for forces  in 

any direction involves c r o s s  correlations between a l l  pa i r s  of compo- 

nents of the forces in a l l  directions. 

Equation (31) can now be written a s  

which corresponds to equation (17)  in the body of the report .  
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