26,963 research outputs found

    Hall effect encoding of brushless dc motors

    Get PDF
    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    Near threshold rotational excitation of molecular ions by electron-impact

    Get PDF
    New cross sections for the rotational excitation of H3+_3^+ by electrons are calculated {\it ab initio} at low impact energies. The validity of the adiabatic-nuclei-rotation (ANR) approximation, combined with RR-matrix wavefunctions, is assessed by comparison with rovibrational quantum defect theory calculations based on the treatment of Kokoouline and Greene ({\it Phys. Rev. A} {\bf 68} 012703 2003). Pure ANR excitation cross sections are shown to be accurate down to threshold, except in the presence of large oscillating Rydberg resonances. These resonances occur for transitions with ΔJ=1\Delta J=1 and are caused by closed channel effects. A simple analytic formula is derived for averaging the rotational probabilities over such resonances in a 3-channel problem. In accord with the Wigner law for an attractive Coulomb field, rotational excitation cross sections are shown to be large and finite at threshold, with a significant but moderate contribution from closed channels.Comment: 3 figures, a5 page

    Infrared Signature of the Superconducting State in Pr(2-x)Ce(x)CuO(4)

    Full text link
    We measured the far infrared reflectivity of two superconducting Pr(2-x)Ce(x)CuO(4) films above and below Tc. The reflectivity in the superconducting state increases and the optical conductivity drops at low energies, in agreement with the opening of a (possibly) anisotropic superconducting gap. The maximum energy of the gap scales roughly with Tc as 2 Delta_{max} / kB Tc ~ 4.7. We determined absolute values of the penetration depth at 5 K as lambda_{ab} = (3300 +/- 700) A for x = 0.15 and lambda_{ab} = (2000 +/- 300) A for x = 0.17. A spectral weight analysis shows that the Ferrell-Glover-Tinkham sum rule is satisfied at conventional low energy scales \~ 4 Delta_{max}.Comment: 4 pages, 4 figure
    corecore