2,103 research outputs found

    The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency.

    Get PDF
    The serine proteinase inhibitor α-1 anti-trypsin (AAT) provides an antiprotease protective screen throughout the body. Mutations in the AAT gene (SERPINA1) that lead to deficiency in AAT are associated with chronic obstructive pulmonary diseases. The Z mutation encodes a misfolded variant of AAT that is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum of hepatocytes and other AAT-producing cells. Until recently, it was thought that loss of antiprotease function was the major cause of ZAAT-related lung disease. However, the contribution of gain-of-function effects is now being recognized. Here we describe how both loss- and gain-of-function effects can contribute to ZAAT-related lung disease. In addition, we explore how SERPINA1 heterozygosity could contribute to smoking-induced chronic obstructive pulmonary diseases and consider the consequences

    Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium.

    Get PDF
    Long non-coding RNAs (lncRNAs) have emerged recently as key regulatory molecules with diverse roles at almost every level of the regulation of gene expression. The roles of these RNAs in the pathogenesis of cystic fibrosis (CF); a lethal multisystem, autosomal recessive disorder have yet to be explored. Our aim was to examine the expression profile of lncRNA, in the airway epithelium of people with CF. We examined the expression of 30,586 lncRNAs by microarray (Human LncRNA Array v3.0, Arraystar, Inc.), in vivo in bronchial cells isolated from endobronchial brushings obtained from CF and non-CF individuals. In total, we identified 1,063 lncRNAs with differential expression between CF and non-CF individuals (fold change ≥3, p≤0.001). The microarray also contained probes for ∼26,109 protein coding transcripts, of which 720 were differentially expressed between CF and non-CF brush samples (fold change ≥3, p≤0.001). Confirmation of a selection of differentially expressed coding mRNA and lncRNA transcripts such as XIST and TLR8 was achieved using qRT-PCR. Gene ontology bioinformatics analysis highlighted that many processes over-represented in the CF bronchial epithelium are related to inflammation. These data show a significantly altered lncRNA and mRNA expression profile in CF bronchial cells in vivo. Dysregulation of some of these lncRNAs may play important roles in the chronic infection and inflammation that exists in the lungs of people with CF

    miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    Get PDF
    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases

    Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique.

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression by translational repression or messenger RNA (mRNA) degradation. Although numerous bioinformatic prediction models exist to identify miRNA-mRNA interactions, experimental validation of bona fide interactions can be difficult and laborious. Few methods can comprehensively identify miRNAs that target a single mRNA. We have developed an experimental approach to search for miRNAs targeting any mRNA using a capture affinity assay involving a biotinylated DNA anti-sense oligonucleotide. This method identifies miRNAs targeting the full length of the mRNA. The method was tested using three separate mRNA targets: alpha-1 antitrypsin (AAT) mRNA, interleukin-8 mRNA and secretory leucoprotease inhibitor mRNA. AAT mRNA-specific and total miRNAs from three different cell lines (monocytic THP-1, bronchial epithelial 16HBE14o- and liver HepG2 cells) were profiled, and validation studies revealed that AAT mRNA-specific miRNAs functionally target the AAT mRNA in a cell-specific manner, providing the first evidence of innate miRNAs selectively targeting and modulating AAT mRNA expression. Interleukin-8 and secretory leucoprotease inhibitor mRNAs and their cognate miRNAs were also successfully captured using this approach. This is a simple and an efficient method to potentially identify miRNAs targeting sequences within the full length of a given mRNA transcript

    Metastatic melanoma in an esophagus demonstrating Barrett esophagus with high grade dysplasia

    Get PDF
    Abstract Background Metastatic melanoma involving the esophagus is rare; the occurrence of metastatic melanoma in a background of Barrett esophagus is rarer still. We report a case of an 80 year-old male who presented to our institution for workup of Barrett esophagus with high-grade dysplasia and who proved to have metastatic melanoma occurring in the background of Barrett esophagus, the first report of this kind, to our knowledge, in the English literature. Case presentation An 80 year-old Caucasian male was diagnosed at an outside institution with Barrett’s esophagus with high grade dysplasia and presented to our institution for therapy. The patient underwent endoscopic mucosal resection using a band ligation technique of an area of nodularity within the Barrett esophagus. Microscopic examination demonstrated extensive Barrett esophagus with high-grade dysplasia as well as a second tumor which was morphologically different from the surrounding high-grade dysplasia and which was positive for S-100, HMB 45 and Melan-A on immunohistochemistry, consistent with melanoma. Further workup of the patient demonstrated multiple radiologic lesions consistent with metastases. Molecular studies demonstrated that the melanoma was positive for the 1799T>A (V600E) mutation in the BRAF gene. The overall features of the tumor were most consistent with metastatic melanoma occurring in a background of Barrett esophagus with high-grade dysplasia. Conclusion This case demonstrates a unique intersection between a premalignant condition (Barrett esophagus with high grade dysplasia) and a separate malignancy (melanoma). This report also shows the utility of molecular testing to support the hypothesis of primary versus metastatic disease in melanoma

    Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    Full text link
    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp) triplet P^o_J (J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.Comment: 13 pages, 9 table

    Implementing an electronic sideband offset lock for precision spectroscopy in radium

    Full text link
    We demonstrate laser frequency stabilization with at least 6 GHz of offset tunability using an in-phase/quadrature (IQ) modulator to generate electronic sidebands (ESB) on a titanium sapphire laser at 714 nm and we apply this technique to the precision spectroscopy of 226^{226}Ra, and 225^{225}Ra. By locking the laser to a single resonance of a high finesse optical cavity and adjusting the lock offset, we determine the frequency difference between the magneto-optical trap (MOT) transitions in the two isotopes to be 2630.0±0.32630.0\pm0.3 MHz, a factor of 29 more precise than the previously available data. Using the known value of the hyperfine splitting of the 3P1^{3}P_{1} level, we calculate the isotope shift for the 1S0^{1}S_{0} to 3P1^{3}P_{1} transition to be 2267.0±2.22267.0\pm2.2 MHz, which is a factor of 8 more precise than the best available value. Our technique could be applied to countless other atomic systems to provide unprecedented precision in isotope shift spectroscopy and other relative frequency comparisons

    Aerial dissemination of Clostridium difficile spores

    Get PDF
    Background: Clostridium difficile-associated diarrhoea (CDAD) is a frequently occurring healthcare-associated infection, which is responsible for significant morbidity and mortality amongst elderly patients in healthcare facilities. Environmental contamination is known to play an important contributory role in the spread of CDAD and it is suspected that contamination might be occurring as a result of aerial dissemination of C. difficile spores. However previous studies have failed to isolate C. difficile from air in hospitals. In an attempt to clarify this issue we undertook a short controlled pilot study in an elderly care ward with the aim of culturing C. difficile from the air. Methods: In a survey undertaken during February (two days) 2006 and March (two days) 2007, air samples were collected using a portable cyclone sampler and surface samples collected using contact plates in a UK hospital. Sampling took place in a six bedded elderly care bay (Study) during February 2006 and in March 2007 both the study bay and a four bedded orthopaedic bay (Control). Particulate material from the air was collected in Ringer's solution, alcohol shocked and plated out in triplicate onto Brazier's CCEY agar without egg yolk, but supplemented with 5 mg/L of lysozyme. After incubation, the identity of isolates was confirmed by standard techniques. Ribotyping and REP-PCR fingerprinting were used to further characterise isolates. Results: On both days in February 2006, C. difficile was cultured from the air with 23 samples yielding the bacterium (mean counts 53 – 426 cfu/m3 of air). One representative isolate from each of these was characterized further. Of the 23 isolates, 22 were ribotype 001 and were indistinguishable on REP-PCR typing. C. difficile was not cultured from the air or surfaces of either hospital bay during the two days in March 2007. Conclusion: This pilot study produced clear evidence of sporadic aerial dissemination of spores of a clone of C. difficile, a finding which may help to explain why CDAD is so persistent within hospitals and difficult to eradicate. Although preliminary, the findings reinforce concerns that current C. difficile control measures may be inadequate and suggest that improved ward ventilation may help to reduce the spread of CDAD in healthcare facilities

    Focal Fat Masquerading as Malignancy in the Liver Graft of a Post-Transplant Patient

    Get PDF
    Liver failure from non-alcoholic fatty liver disease (NAFLD) is an increasing indication for liver transplant and recurrence of fatty liver in transplanted grafts has been documented. Herein is described an atypical recurrence of steatosis as a de novo focal fatty lesion that mimicked a more ominous cancerous lesion. This presentation of recurrent NAFLD has not previously been described in the literature
    corecore