1,304 research outputs found

    Non-O157 Shiga Toxin–Producing \u3ci\u3eEscherichia coli\u3c/i\u3e Infections in the United States, 1983–2002

    Get PDF
    Background. Shiga toxin–producing Escherichia coli (STEC) O157:H7 is a well-recognized cause of bloody diarrhea and hemolytic-uremic syndrome (HUS). Non-O157 STEC contribute to this burden of illness but have been underrecognized as a result of diagnostic limitations and inadequate surveillance. Methods. Between 1983 and 2002, 43 state public health laboratories submitted 940 human non-O157 STEC isolates from persons with sporadic illnesses to the Centers for Diseases Control and Prevention reference laboratory for confirmation and serotyping. Results. The most common serogroups were O26 (22%), O111 (16%), O103 (12%), O121 (8%), O45 (7%), and O145 (5%). Non-O157 STEC infections were most frequent during the summer and among young persons (median age, 12 years; interquartile range, 3–37 years). Virulence gene profiles were as follows: 61% stx1 but not stx2; 22% stx2 but not stx1; 17% both stx1 and stx2; 84% intimin (eae); and 86% enterohemolysin (E-hly). stx2 was strongly associated with an increased risk of HUS, and eae was strongly associated with an increased risk of bloody diarrhea. STEC O111 accounted for most cases of HUS and was also the cause of 3 of 7 non-O157 STEC outbreaks reported in the United States. Conclusions. Non-O157 STEC can cause severe illness that is comparable to the illness caused by STEC O157. Strains that produce Shiga toxin 2 are much more likely to cause HUS than are those that produce Shiga toxin 1 alone. Improving surveillance will more fully elucidate the incidence and pathological spectrum of these emerging agents. These efforts require increased clinical suspicion, improved clinical laboratory isolation, and continued serotyping of isolates in public health laboratories

    The Compact Structures of Massive z ∼ 0.7 Post-starburst Galaxies in the SQuIGGL⃗E Sample

    Full text link
    We present structural measurements of 145 spectroscopically selected intermediate-redshift (z ∼ 0.7), massive (M⋆ ∼ 1011 M⊙) post-starburst galaxies from the SQuIGGL⃗E\mathrm{SQuIGG}\vec{L}{\rm{E}} sample measured using wide-depth Hyper Suprime-Cam i-band imaging. This deep imaging allows us to probe the sizes and structures of these galaxies, which we compare to a control sample of star-forming and quiescent galaxies drawn from the LEGA-C Survey. We find that post-starburst galaxies systematically lie ∼0.1 dex below the quiescent mass–size (half-light radius) relation, with a scatter of ∼0.2 dex. This finding is bolstered by nonparametric measures, such as the Gini coefficient and the concentration, which also reveal these galaxies to have more compact light profiles than both quiescent and star-forming populations at similar mass and redshift. The sizes of post-starburst galaxies show either negative or no correlation with the time since quenching, such that more recently quenched galaxies are larger or similarly sized. This empirical finding disfavors the formation of post-starburst galaxies via a purely central burst of star formation that simultaneously shrinks the galaxy and shuts off star formation. We show that the central densities of post-starburst and quiescent galaxies at this epoch are very similar, in contrast with their effective radii. The structural properties of z ∼ 0.7 post-starburst galaxies match those of quiescent galaxies that formed in the early universe, suggesting that rapid quenching in the present epoch is driven by a similar mechanism to the one at high redshift

    SQuIGGLE: Studying Quenching in Intermediate-z Galaxies -- Gas, AnguLar Momentum, and Evolution

    Get PDF
    We describe the SQuIGGLE survey of intermediate-redshift post-starburst galaxies. We leverage the large sky coverage of the SDSS to select ~1300 recently-quenched galaxies at 0.5<z<~0.9 based on their unique spectral shapes. These bright, intermediate-redshift galaxies are ideal laboratories to study the physics responsible for the rapid quenching of star formation: they are distant enough to be useful analogs for high-redshift quenching galaxies, but low enough redshift that multi-wavelength follow-up observations are feasible with modest telescope investments. We use the Prospector code to infer the stellar population properties and non-parametric star formation histories of all galaxies in the sample. We find that SQuIGGLE galaxies are both very massive (M* ~ 10^11.25 Msun) and quenched, with inferred star formation rates <~1Msun/yr, more than an order of magnitude below the star-forming main sequence. The best-fit star formation histories confirm that these galaxies recently quenched a major burst of star formation: >75% of SQuIGGLE galaxies formed at least a quarter of their total stellar mass in the recent burst, which ended just ~200Myr before observation. We find that SQuIGGLE galaxies are on average younger and more burst-dominated than most other z<~1 post-starburst samples. This large sample of bright post-starburst galaxies at intermediate redshift opens a wide range of studies into the quenching process. In particular, the full SQuIGGLE survey will investigate the molecular gas reservoirs, morphologies, kinematics, resolved stellar populations, AGN incidence, and infrared properties of this unique sample of galaxies in order to place definitive constraints on the quenching process.Comment: 23 pages, 16 figures, accepted to Ap

    Squiggle: Studying Quenching in Intermediate-z Galaxies—Gas, Angular Momentum, and Evolution

    Full text link
    We describe the Studying Quenching in Intermediate-z Galaxies: Gas, anguL→ar{\rm{angu}}\overrightarrow{L}{\rm{ar}} momentum, and Evolution (SQuIGGL⃗E\mathrm{SQuIGG}\vec{L}{\rm{E}}) survey of intermediate-redshift post-starburst galaxies. We leverage the large sky coverage of the Sloan Digital Sky Survey to select ∼ 1300 recently quenched galaxies at 0.5 75% of SQuIGGL⃗E\mathrm{SQuIGG}\vec{L}{\rm{E}} galaxies formed at least a quarter of their total stellar mass in the recent burst, which ended just ∼200 Myr before observation. We find that SQuIGGL⃗E\mathrm{SQuIGG}\vec{L}{\rm{E}} galaxies are on average younger and more burst-dominated than most other z ≲ 1 post-starburst galaxy samples. This large sample of bright post-starburst galaxies at intermediate redshift opens a wide range of studies into the quenching process. In particular, the full SQuIGGL⃗E\mathrm{SQuIGG}\vec{L}{\rm{E}} survey will investigate the molecular gas reservoirs, morphologies, kinematics, resolved stellar populations, active galactic nucleus incidence, and infrared properties of this unique sample of galaxies in order to place definitive constraints on the quenching process

    Hospitalization and Antimicrobial Resistance in Salmonella Outbreaks, 1984–2002

    Get PDF
    Few studies have evaluated the health consequences of antimicrobial-resistant Salmonella strains associated with outbreaks. Among 32 outbreaks occurring in the United States from 1984 to 2002, 22% of 13,286 persons in 10 Salmonella-resistant outbreaks were hospitalized, compared with 8% of 2,194 persons in 22 outbreaks caused by pansusceptible Salmonella strains (p<0.01)

    Semen amyloids participate in spermatozoa selection and clearance

    Get PDF
    Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens
    • …
    corecore