457 research outputs found

    Electronic clinical decision support for children with minor head trauma and intracranial injuries: A sociotechnical analysis

    Get PDF
    BACKGROUND: Current management of children with minor head trauma (MHT) and intracranial injuries is not evidence-based and may place some children at risk of harm. Evidence-based electronic clinical decision support (CDS) for management of these children may improve patient safety and decrease resource use. To guide these efforts, we evaluated the sociotechnical environment impacting the implementation of electronic CDS, including workflow and communication, institutional culture, and hardware and software infrastructure, among other factors. METHODS: Between March and May, 2020 semi-structured qualitative focus group interviews were conducted to identify sociotechnical influences on CDS implementation. Physicians from neurosurgery, emergency medicine, critical care, and pediatric general surgery were included, along with information technology specialists. Participants were recruited from nine health centers in the United States. Focus group transcripts were coded and analyzed using thematic analysis. The final themes were then cross-referenced with previously defined sociotechnical dimensions. RESULTS: We included 28 physicians and four information technology specialists in seven focus groups (median five participants per group). Five physicians were trainees and 10 had administrative leadership positions. Through inductive thematic analysis, we identified five primary themes: (1) clinical impact; (2) stakeholders and users; (3) tool content; (4) clinical practice integration; and (5) post-implementation evaluation measures. Participants generally supported using CDS to determine an appropriate level-of-care for these children. However, some had mixed feelings regarding how the tool could best be used by different specialties (e.g. use by neurosurgeons versus non-neurosurgeons). Feedback from the interviews helped refine the tool content and also highlighted potential technical and workflow barriers to address prior to implementation. CONCLUSIONS: We identified key factors impacting the implementation of electronic CDS for children with MHT and intracranial injuries. These results have informed our implementation strategy and may also serve as a template for future efforts to implement health information technology in a multidisciplinary, emergency setting

    Resorufin analogs preferentially bind cerebrovascular amyloid: potential use as imaging ligands for cerebral amyloid angiopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral amyloid angiopathy (CAA) is characterized by deposition of fibrillar amyloid β (Aβ) within cerebral vessels. It is commonly seen in the elderly and almost universally present in patients with Alzheimer's Disease (AD). In both patient populations, CAA is an independent risk factor for lobar hemorrhage, ischemic stroke, and dementia. To date, definitive diagnosis of CAA requires obtaining pathological tissues via brain biopsy (which is rarely clinically indicated) or at autopsy. Though amyloid tracers labeled with positron-emitting radioligands such as [<sup>11</sup>C]PIB have shown promise for non-invasive amyloid imaging in AD patients, to date they have been unable to clarify whether the observed amyloid load represents neuritic plaques versus CAA due in large part to the low resolution of PET imaging and the almost equal affinity of these tracers for both vascular and parenchymal amyloid. Therefore, the development of a precise and specific non-invasive technique for diagnosing CAA in live patients is desired.</p> <p>Results</p> <p>We found that the phenoxazine derivative resorufin preferentially bound cerebrovascular amyloid deposits over neuritic plaques in the aged Tg2576 transgenic mouse model of AD/CAA, whereas the congophilic amyloid dye methoxy-X34 bound both cerebrovascular amyloid deposits and neuritic plaques. Similarly, resorufin-positive staining was predominantly noted in fibrillar Aβ-laden vessels in postmortem AD brain tissues. Fluorescent labeling and multi-photon microscopy further revealed that both resorufin- and methoxy-X34-positive staining is colocalized to the vascular smooth muscle (VSMC) layer of vessel segments that have severe disruption of VSMC arrangement, a characteristic feature of CAA. Resorufin also selectively visualized vascular amyloid deposits in live Tg2576 mice when administered topically, though not systemically. Resorufin derivatives with chemical modification at the 7-OH position of resorufin also displayed a marked preferential binding affinity for CAA, but with enhanced lipid solubility that indicates their use as a non-invasive imaging tracer for CAA is feasible.</p> <p>Conclusions</p> <p>To our knowledge, resorufin analogs are the fist class of amyloid dye that can discriminate between cerebrovascular and neuritic forms of amyloid. This unique binding selectivity suggests that this class of dye has great potential as a CAA-specific amyloid tracer that will permit non-invasive detection and quantification of CAA in live patients.</p

    Derivation and validation of a clinical prediction rule for upper limb functional outcomes after traumatic cervical spinal cord injury

    Get PDF
    IMPORTANCE: Traumatic cervical spinal cord injury (SCI) can result in debilitating paralysis. Following cervical SCI, accurate early prediction of upper limb recovery can serve an important role in guiding the appropriateness and timing of reconstructive therapies. OBJECTIVE: To develop a clinical prediction rule to prognosticate upper limb functional recovery after cervical SCI. DESIGN, SETTING, AND PARTICIPANTS: This prognostic study was a retrospective review of a longitudinal cohort study including patients enrolled in the National SCI model systems (SCIMS) database in US. Eligible patients were 15 years or older with tetraplegia (neurological level of injury C1-C8, American Spinal Cord Injury Association [ASIA] impairment scale [AIS] A-D), with early (within 1 month of SCI) and late (1-year follow-up) clinical examinations from 2011 to 2016. The data analysis was conducted from September 2021 to June 2022. MAIN OUTCOMES AND MEASURES: The primary outcome was a composite of dependency in eating, bladder management, transfers, and locomotion domains of functional independence measure at 1-year follow-up. Each domain ranges from 1 to 7 with a lower score indicating greater functional dependence. Composite dependency was defined as a score of 4 or higher in at least 3 chosen domains. Multivariable logistic regression was used to predict the outcome based on early neurological variables. Discrimination was quantified using C statistics, and model performance was internally validated with bootstrapping and 10-fold cross-validation. The performance of the prediction score was compared with AIS grading. Data were split into derivation (2011-2014) and temporal-validation (2015-2016) cohorts. RESULTS: Among 2373 patients with traumatic cervical SCI, 940 had complete 1-year outcome data (237 patients [25%] aged 60 years or older; 753 men [80%]). The primary outcome was present in 118 patients (13%), which included 92 men (78%), 83 (70%) patients who were younger than 60 years, and 73 (62%) patients experiencing AIS grade A SCI. The variables significantly associated with the outcome were age (age 60 years or older: OR, 2.31; 95% CI, 1.26-4.19), sex (men: OR, 0.60; 95% CI, 0.31-1.17), light-touch sensation at C5 (OR, 0.44; 95% CI, 0.44-1.01) and C8 (OR, 036; 95% CI, 0.24-0.53) dermatomes, and motor scores of the elbow flexors (C5) (OR, 0.74; 95% CI, 0.60-0.89) and wrist extensors (C6) (OR, 0.61; 95% CI, 0.49-0.75). A multivariable model including these variables had excellent discrimination in distinguishing dependent from independent patients in the temporal-validation cohort (C statistic, 0.90; 95% CI, 0.88-0.93). A clinical prediction score (range, 0 to 45 points) was developed based on these measures, with higher scores increasing the probability of dependency. The discrimination of the prediction score was significantly higher than from AIS grading (change in AUC, 0.14; 95% CI, 0.10-0.18; P \u3c .001). CONCLUSIONS AND RELEVANCE: The findings of this study suggest that this prediction rule may help prognosticate upper limb function following cervical SCI. This tool can be used to set patient expectations, rehabilitation goals, and aid decision-making regarding the appropriateness and timing for upper limb reconstructive surgeries

    Translating data analytics into improved spine surgery outcomes: A roadmap for biomedical informatics research in 2021

    Get PDF
    STUDY DESIGN: Narrative review. OBJECTIVES: There is growing interest in the use of biomedical informatics and data analytics tools in spine surgery. Yet despite the rapid growth in research on these topics, few analytic tools have been implemented in routine spine practice. The purpose of this review is to provide a health information technology (HIT) roadmap to help translate data assets and analytics tools into measurable advances in spine surgical care. METHODS: We conducted a narrative review of PubMed and Google Scholar to identify publications discussing data assets, analytical approaches, and implementation strategies relevant to spine surgery practice. RESULTS: A variety of data assets are available for spine research, ranging from commonly used datasets, such as administrative billing data, to emerging resources, such as mobile health and biobanks. Both regression and machine learning techniques are valuable for analyzing these assets, and researchers should recognize the particular strengths and weaknesses of each approach. Few studies have focused on the implementation of HIT, and a variety of methods exist to help translate analytic tools into clinically useful interventions. Finally, a number of HIT-related challenges must be recognized and addressed, including stakeholder acceptance, regulatory oversight, and ethical considerations. CONCLUSIONS: Biomedical informatics has the potential to support the development of new HIT that can improve spine surgery quality and outcomes. By understanding the development life-cycle that includes identifying an appropriate data asset, selecting an analytic approach, and leveraging an effective implementation strategy, spine researchers can translate this potential into measurable advances in patient care

    Implications of preoperative depression for lumbar spine surgery outcomes: A systematic review and meta-analysis

    Get PDF
    IMPORTANCE: Comorbid depression is common among patients with degenerative lumbar spine disease. Although a well-researched topic, the evidence of the role of depression in spine surgery outcomes remains inconclusive. OBJECTIVE: To investigate the association between preoperative depression and patient-reported outcome measures (PROMs) after lumbar spine surgery. DATA SOURCES: A systematic search of PubMed, Cochrane Database of Systematic Reviews, Embase, Scopus, PsychInfo, Web of Science, and ClinicalTrials.gov was performed from database inception to September 14, 2023. STUDY SELECTION: Included studies involved adults undergoing lumbar spine surgery and compared PROMs in patients with vs those without depression. Studies evaluating the correlation between preoperative depression and disease severity were also included. DATA EXTRACTION AND SYNTHESIS: All data were independently extracted by 2 authors and independently verified by a third author. Study quality was assessed using Newcastle-Ottawa Scale. Random-effects meta-analysis was used to synthesize data, and I2 was used to assess heterogeneity. Metaregression was performed to identify factors explaining the heterogeneity. MAIN OUTCOMES AND MEASURES: The primary outcome was the standardized mean difference (SMD) of change from preoperative baseline to postoperative follow-up in PROMs of disability, pain, and physical function for patients with vs without depression. Secondary outcomes were preoperative and postoperative differences in absolute disease severity for these 2 patient populations. RESULTS: Of the 8459 articles identified, 44 were included in the analysis. These studies involved 21 452 patients with a mean (SD) age of 57 (8) years and included 11 747 females (55%). Among these studies, the median (range) follow-up duration was 12 (6-120) months. The pooled estimates of disability, pain, and physical function showed that patients with depression experienced a greater magnitude of improvement compared with patients without depression, but this difference was not significant (SMD, 0.04 [95% CI, -0.02 to 0.10]; I2 = 75%; P = .21). Nonetheless, patients with depression presented with worse preoperative disease severity in disability, pain, and physical function (SMD, -0.52 [95% CI, -0.62 to -0.41]; I2 = 89%; P \u3c .001), which remained worse postoperatively (SMD, -0.52 [95% CI, -0.75 to -0.28]; I2 = 98%; P \u3c .001). There was no significant correlation between depression severity and the primary outcome. A multivariable metaregression analysis suggested that age, sex (male to female ratio), percentage of comorbidities, and follow-up attrition were significant sources of variance. CONCLUSIONS AND RELEVANCE: Results of this systematic review and meta-analysis suggested that, although patients with depression had worse disease severity both before and after surgery compared with patients without depression, they had significant potential for recovery in disability, pain, and physical function. Further investigations are needed to examine the association between spine-related disability and depression as well as the role of perioperative mental health treatments

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Upper limb nerve transfer surgery in patients with tetraplegia

    Get PDF
    IMPORTANCE: Cervical spinal cord injury (SCI) causes devastating loss of upper extremity function and independence. Nerve transfers are a promising approach to reanimate upper limbs; however, there remains a paucity of high-quality evidence supporting a clinical benefit for patients with tetraplegia. OBJECTIVE: To evaluate the clinical utility of nerve transfers for reanimation of upper limb function in tetraplegia. DESIGN, SETTING, AND PARTICIPANTS: In this prospective case series, adults with cervical SCI and upper extremity paralysis whose recovery plateaued were enrolled between September 1, 2015, and January 31, 2019. Data analysis was performed from August 2021 to February 2022. INTERVENTIONS: Nerve transfers to reanimate upper extremity motor function with target reinnervation of elbow extension and hand grasp, pinch, and/or release. MAIN OUTCOMES AND MEASURES: The primary outcome was motor strength measured by Medical Research Council (MRC) grades 0 to 5. Secondary outcomes included Sollerman Hand Function Test (SHFT); Michigan Hand Outcome Questionnaire (MHQ); Disabilities of Arm, Shoulder, and Hand (DASH); and 36-Item Short Form Health Survey (SF-36) physical component summary (PCS) and mental component summary (MCS) scores. Outcomes were assessed up to 48 months postoperatively. RESULTS: Twenty-two patients with tetraplegia (median age, 36 years [range, 18-76 years]; 21 male [95%]) underwent 60 nerve transfers on 35 upper limbs at a median time of 21 months (range, 6-142 months) after SCI. At final follow-up, upper limb motor strength improved significantly: median MRC grades were 3 (IQR, 2.5-4; P = .01) for triceps, with 70% of upper limbs gaining an MRC grade of 3 or higher for elbow extension; 4 (IQR, 2-4; P \u3c .001) for finger extensors, with 79% of hands gaining an MRC grade of 3 or higher for finger extension; and 2 (IQR, 1-3; P \u3c .001) for finger flexors, with 52% of hands gaining an MRC grade of 3 or higher for finger flexion. The secondary outcomes of SHFT, MHQ, DASH, and SF36-PCS scores improved beyond the established minimal clinically important difference. Both early (\u3c12 months) and delayed (≥12 months) nerve transfers after SCI achieved comparable motor outcomes. Continual improvement in motor strength was observed in the finger flexors and extensors across the entire duration of follow-up. CONCLUSIONS AND RELEVANCE: In this prospective case series, nerve transfer surgery was associated with improvement of upper limb motor strength and functional independence in patients with tetraplegia. Nerve transfer is a promising intervention feasible in both subacute and chronic SCI

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems

    Get PDF
    © 2017 IOP Publishing Ltd. Objective. This work proposes principled strategies for self-adaptations in EEG-based Brain-computer interfaces (BCIs) as a way out of the bandwidth bottleneck resulting from the considerable mismatch between the low-bandwidth interface and the bandwidth-hungry application, and a way to enable fluent and intuitive interaction in embodiment systems. The main focus is laid upon inferring the hidden target goals of users while navigating in a remote environment as a basis for possible adaptations. Approach. To reason about possible user goals, a general user-agnostic Bayesian update rule is devised to be recursively applied upon the arrival of evidences, i.e. user input and user gaze. Experiments were conducted with healthy subjects within robotic embodiment settings to evaluate the proposed method. These experiments varied along three factors: the type of the robot/environment (simulated and physical), the type of the interface (keyboard or BCI), and the way goal recognition (GR) is used to guide a simple shared control (SC) driving scheme. Main results. Our results show that the proposed GR algorithm is able to track and infer the hidden user goals with relatively high precision and recall. Further, the realized SC driving scheme benefits from the output of the GR system and is able to reduce the user effort needed to accomplish the assigned tasks. Despite the fact that the BCI requires higher effort compared to the keyboard conditions, most subjects were able to complete the assigned tasks, and the proposed GR system is additionally shown able to handle the uncertainty in user input during SSVEP-based interaction. The SC application of the belief vector indicates that the benefits of the GR module are more pronounced for BCIs, compared to the keyboard interface. Significance. Being based on intuitive heuristics that model the behavior of the general population during the execution of navigation tasks, the proposed GR method can be used without prior tuning for the individual users. The proposed methods can be easily integrated in devising more advanced SC schemes and/or strategies for automatic BCI self-adaptations
    • …
    corecore