71,585 research outputs found
A model for multi-quark systems
As a step towards understanding multi-quark systems abundant in nature we
construct a model that reproduces the binding energies of static four-quark
systems. These energies have been calculated using SU(2) lattice gauge theory
for a set of six different geometries representative of the general case. The
model is based on ground and excited state two-body potentials and multi-quark
interaction terms.Comment: 10 pages, one LaTeX figur
An interquark potential model for multi-quark systems
A potential model for four interacting quarks is constructed in SU(2) from
six basis states -- the three partitions into quark pairs, where the gluon
field is either in its ground state or first excited state. With four
independent parameters to describe the interactions connecting these basis
states, it is possible to fit 100 pieces of data -- the ground and first
excited states of configurations from six different four-quark geometries
calculated on a 16^3*32 lattice.Comment: 14 page
Four-quark flux distribution and binding in lattice SU(2)
The full spatial distribution of the color fields of two and four static
quarks is measured in lattice SU(2) field theory at separations up to 1 fm at
beta=2.4. The four-quark case is equivalent to a qbar q qbar q system in SU(2)
and is relevant to meson-meson interactions. By subtracting two-body flux tubes
from the four-quark distribution we isolate the flux contribution connected
with the four-body binding energy. This contribution is further studied using a
model for the binding energies. Lattice sum rules for two and four quarks are
used to verify the results.Comment: 46 pages including 71 eps figures. 3D color figures are available at
www.physics.helsinki.fi/~ppennane/pics
Exploiting correlogram structure for robust speech recognition with multiple speech sources
This paper addresses the problem of separating and recognising speech in a monaural acoustic mixture with the presence of competing speech sources. The proposed system treats sound source separation and speech recognition as
tightly coupled processes. In the first stage sound source separation is performed in the correlogram domain. For periodic sounds, the correlogram exhibits symmetric tree-like structures whose stems are located on the delay
that corresponds to multiple pitch periods. These pitch-related structures are exploited in the study to group spectral components at each time frame. Local
pitch estimates are then computed for each spectral group and are used to form simultaneous pitch tracks for temporal integration. These processes segregate a spectral representation of the acoustic mixture into several time-frequency regions such that the energy in each region is likely to have originated from a single periodic sound source. The identified time-frequency regions, together
with the spectral representation, are employed by a `speech fragment decoder' which employs `missing data' techniques with clean speech models to simultaneously search for the acoustic evidence that best matches model sequences. The paper presents evaluations based on artificially mixed simultaneous speech utterances. A coherence-measuring experiment is first reported which quantifies the consistency of the identified fragments with a single source. The system is then evaluated in a speech recognition task and compared to a conventional fragment generation approach. Results show that the proposed system produces more coherent fragments over different conditions,
which results in significantly better recognition accuracy
Correlation of stress-wave-emission characteristics with fracture in aluminum alloys, 1 September - 1 December 1969
Cryogenic testing of aluminum alloy specimens for fracture toughness and stress wave dat
Quantum and Classical in Adiabatic Computation
Adiabatic transport provides a powerful way to manipulate quantum states. By
preparing a system in a readily initialised state and then slowly changing its
Hamiltonian, one may achieve quantum states that would otherwise be
inaccessible. Moreover, a judicious choice of final Hamiltonian whose
groundstate encodes the solution to a problem allows adiabatic transport to be
used for universal quantum computation. However, the dephasing effects of the
environment limit the quantum correlations that an open system can support and
degrade the power of such adiabatic computation. We quantify this effect by
allowing the system to evolve over a restricted set of quantum states,
providing a link between physically inspired classical optimisation algorithms
and quantum adiabatic optimisation. This new perspective allows us to develop
benchmarks to bound the quantum correlations harnessed by an adiabatic
computation. We apply these to the D-Wave Vesuvius machine with revealing -
though inconclusive - results
An Introduction to Slice-Based Cohesion and Coupling Metrics
This report provides an overview of slice-based software metrics. It brings together information about the development of the metrics from Weiserâs original idea that program slices may be used in the measurement of program complexity, with alternative slice-based measures proposed by other researchers. In particular, it details two aspects of slice-based metric calculation not covered elsewhere in the literature: output variables and worked examples of the calculations. First, output variables are explained, their use explored and standard reference terms and usage proposed. Calculating slice-based metrics requires a clear understanding of âoutput variablesâ because they form the basis for extracting the program slices on which the calculations depend. This report includes a survey of the variation in the definition of output variables used by different research groups and suggests standard terms of reference for these variables. Our study identifies four elements which are combined in the definition of output variables. These are the function return value, modified global variables, modified reference parameters and variables printed or otherwise output by the module. Second, slice-based metric calculations are explained with the aid of worked examples, to assist newcomers to the field. Step-by-step calculations of slice-based cohesion and coupling metrics based on the vertices output by the static analysis tool CodeSurfer (R) are presented and compared with line-based calculations
A study of human performance in a rotating environment
Consideration is given to the lack of sufficient data relative to the response of man to the attendant oculovestibular stimulations induced by multi-directional movement of an individual within the rotating environment to provide the required design criteria. This was done to determine the overall impact of artificial gravity simulations on potential design configurations and crew operational procedures. Gross locomotion and fine motor performance were evaluated. Results indicate that crew orientation, rotational rates, vehicle design configurations, and operational procedures may be used to reduce the severity of the adverse effects of the Coriolis and cross-coupled angular accelerations acting on masses moving within a rotating environment. Results further indicate that crew selection, motivation, and short-term exposures to the rotating environment may be important considerations for future crew indoctrination and training programs
- âŠ